RESUMO
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as inâ vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.
Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , FarmacocinéticaRESUMO
Deregulation of ubiquitin conjugation or deconjugation has been implicated in the pathogenesis of many human diseases including cancer. The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1), in association with UAF1 (USP1-associated factor 1), is a known regulator of DNA damage response and has been shown as a promising anticancer target. To further evaluate USP1/UAF1 as a therapeutic target, we conducted a quantitative high throughput screen of >400000 compounds and subsequent medicinal chemistry optimization of small molecules that inhibit the deubiquitinating activity of USP1/UAF1. Ultimately, these efforts led to the identification of ML323 (70) and related N-benzyl-2-phenylpyrimidin-4-amine derivatives, which possess nanomolar USP1/UAF1 inhibitory potency. Moreover, we demonstrate a strong correlation between compound IC50 values for USP1/UAF1 inhibition and activity in nonsmall cell lung cancer cells, specifically increased monoubiquitinated PCNA (Ub-PCNA) levels and decreased cell survival. Our results establish the druggability of the USP1/UAF1 deubiquitinase complex and its potential as a molecular target for anticancer therapies.
Assuntos
Antineoplásicos/síntese química , Proteínas de Arabidopsis/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Pirimidinas/síntese química , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pirimidinas/farmacologia , Relação Estrutura-Atividade , UbiquitinaçãoRESUMO
Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in ß-cells.
Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Derivados de Benzeno/síntese química , Inibidores de Lipoxigenase/síntese química , Sulfonamidas/síntese química , Animais , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Disponibilidade Biológica , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologiaRESUMO
As part of our continuing efforts to identify therapeutics for CNS diseases such as schizophrenia and Alzheimer's disease (AD), we have been focused on the 5-HT(6) receptor in order to identify potent and selective ligands as a potential treatment for cognitive dysfunction. Herein we report the identification of a novel series of benzoxazole derivatives as potent 5-HT(6) ligands. The synthesis and detailed SAR of this class of compounds are reported. The compounds have been shown to be full antagonists in a cyclic AMP functional assay.