Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Thyroid J ; 12(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052158

RESUMO

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Camundongos , Humanos , Animais , Câncer Papilífero da Tireoide/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores da Tireotropina/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide/genética , Tireotropina/metabolismo
2.
Eur Thyroid J ; 12(6)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855416

RESUMO

Objective: Nonautoimmune hyperthyroidism (NAH) is rare and occurs due to a constitutively activating thyroid stimulating hormone receptor (TSHR) mutation. In contrast to other thyroid nodules, no further evaluation for malignancy is recommended for hot thyroid nodules. In the first model for NAH in mice nearly all homozygous mice had developed papillary thyroid cancer by 12 months of age. Methods: To further evaluate these mice, whole exome sequencing and phosphoproteome analysis were employed in a further generation of mice to identify any other mutations potentially responsible and to identify the pathways involved in thyroid carcinoma development. Results: Only three genes (Nrg1, Rrs1, Rasal2) were mutated in all mice examined, none of which were known primary drivers of papillary thyroid cancer development. Wild-type and homozygous TSHR D633H knockin mice showed distinct phosphoproteome profiles with an enrichment of altered phosphosites found in ERK/mitogen-activated protein kinase (MAPK) signaling. Most importantly, phosphosites with known downstream effects included BRAF p.S766, which forms an inhibitory site: a decrease of phosphorylation at this site suggests an increase in MEK/ERK pathway activation. The decreased phosphorylation at BRAF p.S766 would suggest decreased AMP-activated protein kinase (AMPK) signaling, which is supported by the decreased phosphorylation of STIM1 p.S257, a downstream AMPK target. Conclusion: The modified phosphoproteome profile of the homozygous mice in combination with human literature suggests a potential signaling pathway from constitutive TSHR signaling and cAMP activation to the activation of ERK/MAPK signaling. This is the first time that a specific mechanism has been identified for a possible involvement of TSH signaling in thyroid carcinoma development.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptores da Tireotropina/genética , Transdução de Sinais/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Tireotropina/metabolismo
3.
Dis Model Mech ; 15(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379110

RESUMO

Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Animais , Feminino , Masculino , Camundongos , Mutação/genética , Mutação Puntual , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral
4.
Sci Rep ; 11(1): 4181, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602982

RESUMO

The primary cilium is well-preserved in human differentiated thyroid cancers such as papillary and follicular carcinoma. Specific thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto's thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria-dependent apoptosis pathway. Tg-Cre;Ift88flox/flox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria-dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss-of-function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial-dependent apoptotic cell death in differentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting differentiated thyroid cancers.


Assuntos
Apoptose/fisiologia , Cílios/patologia , Mitocôndrias/patologia , Neoplasias da Glândula Tireoide/patologia , Adulto , Animais , Carcinoma Papilar/patologia , Morte Celular/fisiologia , Linhagem Celular , Feminino , Doença de Hashimoto/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/patologia , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/patologia
5.
Thyroid ; 29(10): 1438-1446, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31526103

RESUMO

Background: Radioiodine refractory dedifferentiated thyroid cancer is a major clinical challenge. Anaplastic lymphoma kinase (ALK) mutations with increased ALK activity, especially fusion genes, have been suggested to promote thyroid carcinogenesis, leading to development of poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma. To determine the oncogenic potential of increased ALK activity in thyroid carcinogenesis in vivo, we studied mice with thyrocyte-specific expression of a constitutively active ALK mutant. Methods: Mice carrying a Cre-activated allele of a constitutively active ALK mutant (F1174L) were crossed with mice expressing tamoxifen-inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to achieve thyrocyte-specific expression of the ALK mutant (ALKF1174L mice). Survival, thyroid hormone serum concentration, and tumor development were recorded. Thyroids and lungs were studied histologically. To maintain euthyroidism despite dedifferentiation of the thyroid, a cohort was substituted with levothyroxine (LT4) through drinking water. Results: ALKF1174L mice developed massively enlarged thyroids, which showed an early loss of normal follicular architecture 12 weeks after tamoxifen injection. A significant decrease in Tg and Nkx-2.1 expression as well as impaired thyroid hormone synthesis confirmed dedifferentiation. Histologically, the mice developed a carcinoma resembling human PDTC with a predominantly trabecular/solid growth pattern and an increased mitotic rate. The tumors showed extrathyroidal extension into the surrounding strap muscles and developed lung metastases. Median survival of ALKF1174L mice was significantly reduced to five months after tamoxifen injection. Reduced Tg expression and loss of follicular structure led to hypothyroidism with elevated thyrotropin (TSH). To test whether TSH stimulation played a role in thyroid carcinogenesis, we kept ALKF1174L mice euthyroid by LT4 substitution. These mice developed PDTC with identical histological features compared with hypothyroid mice, demonstrating that PDTC development was due to increased ALK activity and not dependent on TSH stimulation. Conclusion: Expression of a constitutively activated ALK mutant in thyroids of mice leads to development of metastasizing thyroid cancer resembling human PDTC. These results demonstrate in vivo that increased ALK activity is a driver mechanism in thyroid carcinogenesis.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma/genética , Desdiferenciação Celular/genética , Hipotireoidismo/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias da Glândula Tireoide/genética , Animais , Carcinoma/patologia , Carcinoma/secundário , Hipotireoidismo/etiologia , Camundongos , Invasividade Neoplásica , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator Nuclear 1 de Tireoide/metabolismo , Tireotropina/metabolismo
6.
Mol Cells ; 42(2): 113-122, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30622229

RESUMO

Communications at the interface between the apical membrane of follicular cells and the follicular lumen are critical for the homeostasis of thyroid gland. Primary cilia at the apical membrane of thyroid follicular cells may sense follicular luminal environment and regulate follicular homeostasis, although their role in vivo remains to be determined. Here, mice devoid of primary cilia were generated by thyroid follicular epithelial cell-specific deletion of the gene encoding intraflagellar transport protein 88 (Ift88 ). Thyroid follicular cell-specific Ift88-deficient mice showed normal folliculogenesis and hormonogenesis; however, those older than 7 weeks showed irregularly dilated and destroyed follicles in the thyroid gland. With increasing age, follicular cells with malignant properties showing the characteristic nuclear features of human thyroid carcinomas formed papillary and solid proliferative nodules from degenerated thyroid follicles. Furthermore, malignant tumor cells manifested as tumor emboli in thyroid vessels. These findings suggest that loss-of-function of Ift88/primary cilia results in malignant transformation from degenerated thyroid follicles.


Assuntos
Carcinogênese/patologia , Cílios/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cílios/patologia , Deleção de Genes , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Epiteliais da Tireoide/metabolismo , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/crescimento & desenvolvimento , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Thyroid ; 28(10): 1372-1386, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132406

RESUMO

BACKGROUND: Constitutively active thyrotropin receptor (TSHR) mutations are the most common etiology of non-autoimmune hyperthyroidism (NAH). Thus far, the functionality of these mutations has been tested in vitro, but the in vivo models are lacking. METHODS: To understand the pathophysiology of NAH, the patient-derived constitutively active TSHR D633H mutation was introduced into the murine Tshr by homologous recombination. RESULTS: In this model, both subclinical and overt hyperthyroidism was observed, depending on the age, sex, and genotype. Homozygous mice presented hyperthyroidism at two months of age, while heterozygous animals showed only suppressed thyrotropin. Interestingly, at six months of age, thyroid hormone concentrations in all mutant mice were analogous to wild-type mice, and they showed colloid goiter with flattened thyrocytes. Strikingly, at one year of age, nearly all homozygous mice presented large papillary thyroid carcinomas. Mechanistically, this papillary thyroid carcinoma phenotype was associated with an overactive thyroid and strongly increased stainings of proliferation-, pERK-, and NKX2-1 markers, but no mutations in the "hot-spot" areas of common oncogenes (Braf, Nras, and Kras) were found. CONCLUSIONS: This is the first study to reveal the dynamic age-, sex-, and genotype-dependent development of NAH. Furthermore, the study shows that a constitutively active TSHR can trigger a malignant transformation of thyrocytes.


Assuntos
Bócio/genética , Hipertireoidismo/genética , Receptores da Tireotropina/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Animais , Bócio/patologia , Hipertireoidismo/patologia , Camundongos , Mutação , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
8.
FASEB J ; : fj201800211R, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799790

RESUMO

Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the Gs- and Gq/11-mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of Gs-protein α subunit (Gαs) in adult mice [tamoxifen-inducible Gs protein α subunit deficient (iTGαsKO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGαsKO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGαsKO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGαsKO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gαs in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gαs deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gαs expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/Gs/cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gαs deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.

9.
Oncogene ; 37(32): 4455-4474, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743590

RESUMO

Primary cilia are microtubule-based, dynamic organelles characterized by continuous assembly and disassembly. The intraflagellar transport (IFT) machinery, including IFT88 in cilia, is involved in the maintenance of bidirectional motility along the axonemes, which is required for ciliogenesis and functional competence. Cancer cells are frequently associated with loss of primary cilia and IFT functions. However, there is little information on the role of IFT88 or primary cilia in the metabolic remodeling of cancer cells. Therefore, we investigated the cellular and metabolic effects of the loss-of-function (LOF) mutations of IFT88/primary cilia in thyroid cancer cells. IFT88-deficient 8505C thyroid cancer cells were generated using the CRISPR/Cas9 system, and RNA-sequencing analysis was performed. LOF of the IFT88 gene resulted in a marked defect in ciliogenesis and mitochondrial oxidative function. Gene expression patterns in IFT88-deficient thyroid cancer cells favored glycolysis and lipid biosynthesis. However, LOF of IFT88/primary cilia did not promote thyroid cancer cell proliferation, migration, and invasion. The results suggest that IFT88/primary cilia play a role in metabolic reprogramming in thyroid cancer cells.


Assuntos
Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Cultivadas , Cílios/genética , Cílios/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo
10.
J Clin Invest ; 127(3): 1061-1074, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28218624

RESUMO

MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling.


Assuntos
Hipogonadismo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Infertilidade/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Hipogonadismo/genética , Infertilidade/genética , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Ovário/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Testículo/metabolismo
11.
J Clin Invest ; 121(3): 1163-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21317532

RESUMO

Nicotinic acid (niacin) is a drug used to reduce the progression of atherosclerosis. Its antiatherosclerotic activity is believed to result from lipid-modifying effects, including its ability to decrease LDL cholesterol and increase HDL cholesterol levels in plasma. Here, we report that in a mouse model of atherosclerosis, we found that nicotinic acid inhibited disease progression under conditions that left total cholesterol and HDL cholesterol plasma levels unaffected. The antiatherosclerotic effect was not seen in mice lacking the receptor for nicotinic acid GPR109A. Surprisingly, transplantation of bone marrow from GPR109A-deficient mice into atherosclerosis-prone animals also abrogated the beneficial effect of nicotinic acid. We detected expression of GPR109A in macrophages in atherosclerotic plaques. In macrophages from WT mice, but not from GPR109A-deficient animals, nicotinic acid induced expression of the cholesterol transporter ABCG1 and promoted cholesterol efflux. Furthermore, activation of GPR109A by nicotinic acid inhibited MCP-1-induced recruitment of macrophages into the peritoneal cavity and impaired macrophage recruitment to atherosclerotic plaques. In contrast with current models, our data show that nicotinic acid can reduce the progression of atherosclerosis independently of its lipid-modifying effects through the activation of GPR109A on immune cells. We conclude therefore that GPR109A mediates antiinflammatory effects, which may be useful for treating atherosclerosis and other diseases.


Assuntos
Aterosclerose/tratamento farmacológico , Niacina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adipócitos/citologia , Animais , Aorta/metabolismo , HDL-Colesterol/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Progressão da Doença , Sistema Imunitário , Lipídeos/sangue , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Mol Endocrinol ; 20(12): 3146-64, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959873

RESUMO

The steroid hormone progesterone exerts pleiotrophic functions in many cell types. Although progesterone controls transcriptional activation through binding to its nuclear receptors, it also initiates rapid nongenomic signaling events. Recently, three putative membrane progestin receptors (mPRalpha, beta, and gamma) with structural similarity to G protein-coupled receptors have been identified. These mPR isoforms are expressed in a tissue-specific manner and belong to the larger, highly conserved family of progestin and adiponectin receptors found in plants, eubacteria, and eukaryotes. The fish mPRalpha has been reported to mediate progesterone-dependent MAPK activation and inhibition of cAMP production through coupling to an inhibitory G protein. To functionally characterize the human homologs, we established human embryonic kidney 293 and MDA-MB-231 cell lines that stably express human mPRalpha, beta, or gamma. For comparison, we also established cell lines expressing the mPRalpha cloned from the spotted seatrout (Cynoscion nebulosus) and Japanese pufferfish (Takifugu rubripes). Surprisingly, we found no evidence that human or fish mPRs regulate cAMP production or MAPK (ERK1/2 or p38) activation upon progesterone stimulation. Furthermore, the mPRs did not couple to a highly promiscuous G protein subunit, Galpha(q5i), in transfection studies or provoke Ca(2+) mobilization in response to progesterone. Finally, we demonstrate that transfected mPRs, as well as endogenous human mPRalpha, localize to the endoplasmic reticulum, and that their expression does not lead to increased progestin binding either in membrane preparations or in intact cells. Our results therefore do not support the concept that mPRs are plasma membrane receptors involved in transducing nongenomic progesterone actions.


Assuntos
Retículo Endoplasmático/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Progesterona/análise , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Perciformes/metabolismo , Filogenia , Progesterona/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Takifugu/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Clin Invest ; 115(12): 3634-40, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322797

RESUMO

Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein-coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nicotinic acid-induced antilipolytic effects in adipocytes. One of the major problems of the pharmacotherapeutical use of nicotinic acid is a strong flushing response. This side effect, although harmless, strongly affects patient compliance. In the present study, we show that mice lacking PUMA-G did not show nicotinic acid-induced flushing. In addition, flushing in response to nicotinic acid was also abrogated in the absence of cyclooxygenase type 1, and mice lacking prostaglandin D(2) (PGD(2)) and prostaglandin E(2) (PGE(2)) receptors had reduced flushing responses. The mouse orthologue of GPR109A, PUMA-G, is highly expressed in macrophages and other immune cells, and transplantation of wild-type bone marrow into irradiated PUMA-G-deficient mice restored the nicotinic acid-induced flushing response. Our data clearly indicate that GPR109A mediates nicotinic acid-induced flushing and that this effect involves release of PGE(2) and PGD(2), most likely from immune cells of the skin.


Assuntos
Niacina/metabolismo , Niacina/uso terapêutico , Receptores Acoplados a Proteínas G/fisiologia , Receptores Nicotínicos/fisiologia , Adipócitos/metabolismo , Animais , Transplante de Medula Óssea , Cálcio/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Primers do DNA/química , Ácidos Graxos/metabolismo , Hipolipemiantes/uso terapêutico , Sistema Imunitário , Ligantes , Lipídeos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Ácidos Nicotínicos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Imunológicos/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/imunologia , Fatores de Tempo , Triglicerídeos/metabolismo
14.
Mol Endocrinol ; 18(10): 2553-69, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15256532

RESUMO

We have analyzed the ontogeny and putative mechanisms of transregulation of LH receptor (LHR) and transcription factor GATA-4, coexpressed during the adrenocortical tumorigenesis of prepubertally gonadectomized transgenic (TG) mice expressing the inhibin alpha-subunit promoter/simian virus 40 T-antigen (inhalpha/Tag) transgene. The onset of adrenal LHR mRNA and protein expression coincided with that of GATA-4 at the age of 4 months and preceded the appearance of discernible adrenal tumors at about 6 months. In situ hybridization and double-immunohistochemistry demonstrated colocalization of the LHR and GATA-4 messages and proteins in the adrenal cortex. A GATA-4 expression plasmid cotransfected with a murine LHR promoter-driven luciferase reporter plasmid, containing a consensus GATA-binding site, induced a dose-dependent significant transactivation of the LHR promoter in nonsteroidogenic human embryonic kidney 293, steroidogenic murine mLTC-1 Leydig cells and in murine adrenal Y-1 cells. The Calpha1 cells derived from an Inhalpha/Tag adrenal tumor did not show this response, apparently due to their high endogenous GATA-4 expression. However, an additional link between GATA-4 and LHR in Calpha1 cells was provided upon the LH/human chorionic gonadotropin stimulation of LHR promoter activity; mutations or deletion of the consensus GATA-4 binding site of the LHR promoter abolished this transactivation. EMSAs further proved GATA-4 binding to the putative consensus GATA recognition site. Our results demonstrate direct interrelationship between LHR and GATA-4 expression during adrenocortical tumorigenesis of the inhalpha/Tag mice. There is apparently a positive and reciprocal feed-forward amplification link between LHR and GATA-4 expression. This mechanism gradually and in synergy with Tag expression leads to formation of the LH-dependent adrenocortical tumors.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Antígenos Transformantes de Poliomavirus/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Inibinas/genética , Receptores do LH/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Northern Blotting , Linhagem Celular Tumoral , Primers do DNA , Fator de Transcrição GATA4 , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Orquiectomia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus 40 dos Símios/genética
15.
Am J Physiol Endocrinol Metab ; 285(4): E812-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12773309

RESUMO

Transgenic (TG) female mice, expressing a chimeric bovine luteinizing hormone (LH) beta-subunit/human chorionic gonadotropin beta-subunit COOH-terminal extension (bLHbeta-CTP) gene, produce high levels of circulating LH and serve as a model for functional ovarian hyperandrogenism and follicular cysts. We report here that obesity is a typical feature of these female mice. The mean body weight of the bLHbeta-CTP females was significantly higher than in controls at, and beyond 5 wk of age, and at 5 mo, it was 32% increased. At this age, the amount of white adipose tissue in the bLHbeta-CTP females was significantly increased, as reflected by the weight difference of the retroperitoneal fat pad. In addition, the expression of leptin mRNA in white adipose tissue of the TG females was elevated about twofold. Serum leptin and insulin levels, and food intake, were also increased significantly in the TG females. Brown adipose tissue (BAT) thermogenic activity, as measured by GDP binding to BAT mitochondria, was reduced (P < 0.05). Ovariectomy at the age of 3 wk totally prevented the development of obesity. In summary, the present results show that intact female bLHbeta-CTP mice are obese, have increased food consumption, and reduced BAT thermogenic activity. The weight gain can be explained partly by elevated androgens but is probably also contributed to the increased adrenal steroidogenesis. Hence, the bLHbeta-CTP mice provide a useful model for studying obesity related to elevated LH secretion, with consequent alterations in ovarian and adrenal function.


Assuntos
Hiperandrogenismo/metabolismo , Hormônio Luteinizante/metabolismo , Obesidade/metabolismo , Síndrome do Ovário Policístico/metabolismo , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Hiperandrogenismo/genética , Hiperandrogenismo/fisiopatologia , Hormônio Luteinizante/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/crescimento & desenvolvimento , Camundongos Transgênicos/metabolismo , Modelos Animais , Obesidade/genética , Obesidade/fisiopatologia , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/fisiopatologia
16.
Oncogene ; 22(21): 3269-78, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12761497

RESUMO

Transgenic (TG) mice expressing the Simian virus 40 T-antigen under the control of the murine inhibin-alpha promoter (Inhalpha/Tag) develop granulosa and Leydig cell tumors at the age of 5-6 months, with 100% penetrance. When these mice are gonadectomized, they develop adrenocortical tumors. Suppression of gonadotropin secretion inhibits the tumorigenesis in the gonads of intact animals and in the adrenals after gonadectomy. To study further the role of luteinizing hormone (LH) in gonadal and adrenal tumorigenesis, a double TG mouse model was generated by crossing the Inhalpha/Tag mice with mice producing constitutively elevated levels of LH (bLHbeta-CTP mice). Our results show that in double TG mice (bLHbeta-CTP/Inhalpha/Tag), gonadal tumorigenesis starts earlier and progresses faster than in Inhalpha/Tag mice. Both ovarian and testicular tumors were histologically comparable with the tumors found in Inhalpha/Tag mice. In addition, adrenal tumorigenesis was found in intact double TG females, but not in Inhalpha/Tag females. Inhibin-alpha and LH receptor (LHR) were highly expressed in tumorigenic gonadal tissues, and the elevated LH levels were shown to be associated with ectopic LHR and high inhibin-alpha expression in the female adrenals. We conclude that in the Inhalpha/Tag tumor mouse model, elevated LH levels act as a tumor promoter, advancing gonadal and adrenal tumorigenesis.


Assuntos
Neoplasias do Córtex Suprarrenal/etiologia , Antígenos Transformantes de Poliomavirus/genética , Inibinas/genética , Hormônio Luteinizante Subunidade beta/genética , Neoplasias Ovarianas/etiologia , Neoplasias Testiculares/etiologia , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Glândulas Suprarrenais/metabolismo , Animais , Fusão Gênica Artificial , Gonadotropina Coriônica Humana Subunidade beta/genética , Feminino , Tumor de Células da Granulosa/etiologia , Tumor de Células da Granulosa/metabolismo , Tumor de Células da Granulosa/patologia , Hormônios/sangue , Inibinas/biossíntese , Tumor de Células de Leydig/etiologia , Tumor de Células de Leydig/metabolismo , Tumor de Células de Leydig/patologia , Hormônio Luteinizante/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Receptores do LH/biossíntese , Receptores do LH/genética , Vírus 40 dos Símios/imunologia , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
17.
Nat Med ; 9(3): 352-5, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12563315

RESUMO

Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Hipolipemiantes/metabolismo , Niacina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Nicotínicos/metabolismo , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Clonagem Molecular , Ácidos Graxos não Esterificados/metabolismo , Genes Reporter , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Ensaio Radioligante , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Receptores Nicotínicos/genética , Distribuição Tecidual , Triglicerídeos/metabolismo
18.
Mol Cell Endocrinol ; 187(1-2): 49-56, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11988311

RESUMO

The main functions of luteinizing hormone (LH) are concerned with regulation of gonadal function, and these functions are today well delineated through previous physiological studies. However, novel information of less well-known aspects of actions of this hormone is currently emerging from studies on genetically modified mouse models, with either enhanced or suppressed LH/LH receptor (LHR) function. The novel functions of LH include its role, in specific situations, as promoter of formation and growth of gonadal and extragonadal tumors. Chronically elevated LH levels in transgenic (TG) mice can also induce responses to this hormone in extragonadal tissues. The knockout (KO) mouse for the LHR has elucidated various less well-known details in the function of LH during ontogeny and adult life. Finally, studies on LHR promoter function have revealed that the expression of this gene occurs in age, sex and tissues-specific fashion. The purpose of this brief review is to summarize some of our recent findings upon studies of TG and KO mice with altered function of LH or its receptor.


Assuntos
Hormônio Luteinizante/fisiologia , Receptores do LH/fisiologia , Animais , Feminino , Humanos , Hormônio Luteinizante/genética , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Neoplasias/etiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Regiões Promotoras Genéticas/genética , Receptores do LH/genética , Testículo/efeitos dos fármacos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA