Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Arch Biochem Biophys ; 753: 109915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307314

RESUMO

The human ATP-binding cassette (ABC) transporter, ABCG2, is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider pharmacokinetics. The binding of substrates and inhibitors is a key stage in the transport cycle of ABCG2. Here, we describe a novel binding assay using a high affinity fluorescent inhibitor based on Ko143 and time-resolved Förster resonance energy transfer (TR-FRET) to measure saturation binding to ABCG2. This binding is displaced by Ko143 and other known ABCG2 ligands, and is sensitive to the addition of AMP-PNP, a non-hydrolysable ATP analogue. This assay complements the arsenal of methods for determining drug:ABCG2 interactions and has the possibility of being adaptable for other multidrug pumps.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Trifosfato de Adenosina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo
2.
Cancers (Basel) ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174066

RESUMO

Extracellular vesicles (EVs) have emerged as pivotal mediators of communication in the tumour microenvironment. More specifically, nanosized extracellular vesicles termed exosomes have been shown to contribute to the establishment of a premetastatic niche. Here, we sought to determine what role exosomes play in medulloblastoma (MB) progression and elucidate the underlying mechanisms. Metastatic MB cells (D458 and CHLA-01R) were found to secrete markedly more exosomes compared to their nonmetastatic, primary counterparts (D425 and CHLA-01). In addition, metastatic cell-derived exosomes significantly enhanced the migration and invasiveness of primary MB cells in transwell migration assays. Protease microarray analysis identified that matrix metalloproteinase-2 (MMP-2) was enriched in metastatic cells, and zymography and flow cytometry assays of metastatic exosomes demonstrated higher levels of functionally active MMP-2 on their external surface. Stable genetic knockdown of MMP-2 or extracellular matrix metalloproteinase inducer (EMMPRIN) in metastatic MB cells resulted in the loss of this promigratory effect. Analysis of serial patient cerebrospinal fluid (CSF) samples showed an increase in MMP-2 activity in three out of four patients as the tumour progressed. This study demonstrates the importance of EMMPRIN and MMP-2-associated exosomes in creating a favourable environment to drive medulloblastoma metastasis via extracellular matrix signalling.

3.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831428

RESUMO

Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the multi-functional transcription factor YB-1. Genetic knockdown of YB-1 in Group 3 medulloblastoma cell lines diminished cell invasion in 3D in vitro assays and increased sensitivity to standard-of-care chemotherapeutic vincristine and anti-cancer agents panobinostat and JQ1. For vincristine, this occurred in part by YB-1-mediated transcriptional regulation of multi-drug resistance gene ABCB1, as determined by chromatin immunoprecipitation. Whole transcriptome sequencing of YB-1 knockdown cells identified a role for YB-1 in the regulation of tumourigenic processes, including lipid metabolism, cell death and survival and MYC and mTOR pathways. Stable cisplatin- and vincristine-tolerant Group 3 and SHH cell lines were generated to identify additional mechanisms driving resistance to standard-of-care medulloblastoma therapy. Next-generation sequencing revealed a vastly different transcriptomic landscape following chronic drug exposure, including a drug-tolerant seven-gene expression signature, common to all sequenced drug-tolerant cell lines, representing therapeutically targetable genes implicated in the acquisition of drug tolerance. Our findings provide significant insight into mechanisms and genes underlying therapy resistance in medulloblastoma.

4.
Acta Neuropathol Commun ; 11(1): 6, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631900

RESUMO

The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, by comparing the most aggressive subgroup (Group 3) with the intermediate (SHH) subgroup, we identify crucial differences in tumour heterogeneity, including unique metabolism-driven subpopulations in Group 3 and matrix-producing subpopulations in SHH. To analyse tumour heterogeneity, we profiled individual tumour nodules at the cellular level in 3D MB hydrogel models, which recapitulate subgroup specific phenotypes, by single cell RNA sequencing (scRNAseq) and 3D OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) imaging. In addition to identifying known metabolites characteristic of MB, we observed intra- and internodular heterogeneity and identified subgroup-specific tumour subpopulations. We showed that extracellular matrix factors and adhesion pathways defined unique SHH subpopulations, and made up a distinct shell-like structure of sulphur-containing species, comprising a combination of small leucine-rich proteoglycans (SLRPs) including the collagen organiser lumican. In contrast, the Group 3 tumour model was characterized by multiple subpopulations with greatly enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle activity. Extensive TCA cycle metabolite measurements revealed very high levels of succinate and fumarate with malate levels almost undetectable particularly in Group 3 tumour models. In patients, high fumarate levels (NMR spectroscopy) alongside activated stress response pathways and high Nuclear Factor Erythroid 2-Related Factor 2 (NRF2; gene expression analyses) were associated with poorer survival. Based on these findings we predicted and confirmed that NRF2 inhibition increased sensitivity to vincristine in a long-term 3D drug treatment assay of Group 3 MB. Thus, by combining scRNAseq and 3D OrbiSIMS in a relevant model system we were able to define MB subgroup heterogeneity at the single cell level and elucidate new druggable biomarkers for aggressive Group 3 and low-risk SHH MB.


Assuntos
Biomarcadores Tumorais , Neoplasias Cerebelares , Proteínas Hedgehog , Meduloblastoma , Humanos , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Hidrogéis/uso terapêutico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Fator 2 Relacionado a NF-E2 , Análise de Célula Única , RNA-Seq
5.
Biochim Biophys Acta Biomembr ; 1864(10): 184005, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863425

RESUMO

A mechanistic understanding of how P-glycoprotein (Pgp) is able to bind and transport its astonishing range of substrates remains elusive. Pharmacological data demonstrated the presence of at least four distinct binding sites, but their locations have not been fully elucidated. The combination of biochemical and structural data suggests that initial binding may occur in the central cavity or at the lipid-protein interface. Our objective was to define the binding sites for two transported substrates of Pgp; the anticancer drug vinblastine and the fluorescent probe rhodamine 123. A series of mutations was generated in positions proximal to previously defined drug-interacting residues on Pgp. The protein was purified and reconstituted into styrene-maleic acid lipid particles (SMALPs) to measure the apparent drug binding constant or into liposomes for assessment of drug-stimulated ATP hydrolysis. The biochemical data were reconciled with structural models of Pgp using molecular docking. The data indicated that the binding of rhodamine 123 occurred predominantly within the central cavity of Pgp. In contrast, the significantly more hydrophobic vinblastine bound to both the lipid-protein interface and within the central cavity. The data suggest that the initial interaction of vinca alkaloids with Pgp occurs at the lipid interface followed by internalisation into the central cavity, which also provides the transport conduit. This model is supported by recent structural observations with Pgp and early biophysical and cross-linking approaches. Moreover, the proposed model illustrates that the broad substrate profile for Pgp is underpinned by a combination of multiple initial interaction sites and an accommodating transport conduit.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Lipídeos , Simulação de Acoplamento Molecular , Rodamina 123/metabolismo , Vimblastina/farmacologia
6.
Neurooncol Adv ; 3(1): vdab030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948561

RESUMO

BACKGROUND: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. METHODS: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. RESULTS: Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). CONCLUSIONS: In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.

7.
Cancers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925302

RESUMO

Paediatric ependymomas are aggressive, treatment-resistant tumours with a tendency towards relapse, consistent with a sub-population of therapy-resistant cancer stem cells. These cells are believed to derive from brain lipid binding protein (BLBP)-expressing radial glia, hence we proposed that BLBP may be a marker for ependymoma therapy resistance. BLBP protein expression correlated with reduced overall survival (OS) in patients from two trials (CNS9204, a chemotherapy-led infant trial-5 y OS 45% vs. 80%, p = 0.011-and CNS9904, a radiotherapy-led trial-OS 38% vs. 85%, p = 0.002). All ependymoma cell lines examined by qRT-PCR expressed BLBP, with expression elevated in stem cell-enriched neurospheres. Modulation of BLBP function in 2D and 3D assays, using either peroxisome proliferator activated receptor (PPAR) antagonists or BLBP's fatty acid substrate docosahexaneoic acid (DHA), potentiated chemotherapy response and reduced cell migration and invasion in ependymoma cell lines. BLBP is therefore an independent predictor of poor survival in paediatric ependymoma, and treatment with PPAR antagonists or DHA may represent effective novel therapies, preventing chemotherapy resistance and invasion in paediatric ependymoma patients.

9.
Mol Cancer Res ; 19(3): 375-387, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33239357

RESUMO

Brain and central nervous system tumors represent the most common childhood solid tumors. Comprising 21% of all pediatric cancers, they remain the leading cause of cancer-related mortality and morbidity in childhood. Due to advances in neurosurgical technique, radiotherapy and the use of combination therapy, survival rates have generally increased. However, by cause of the lesion itself, its surgical removal and subsequent treatment, survivors are at high risk of long-term neurocognitive sequelae and secondary cancer. Clearly, improvements in diagnosis and treatment are needed. Accordingly, current treatment is evolving away from conventional, uniform therapy and towards risk-stratified regimens and molecularly-targeted therapies, with the aim of diminishing adverse side effects while minimizing the risk of disease recurrence. The multifunctional oncoprotein Y-box binding protein 1 (YB-1) may serve as one such molecular target. Increased YB-1 levels have been reported in a number of pediatric brain tumors, where YB-1 appears to facilitate the advancement of malignant phenotypes. These include proliferation, invasion, and resistance to therapy, as well as the maintenance of brain tumor-initiating cells. Here we evaluate the current literature and show how YB-1 modulates signaling pathways driving each of these phenotypes. We also review the regulation of YB-1 at a transcriptional, translational, posttranslational and subcellular level and argue that there is strong and sufficient evidence to support the development of YB-1 as a biomarker and future therapeutic target in childhood brain tumors.


Assuntos
Neoplasias Encefálicas/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Adolescente , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transdução de Sinais
10.
J Pathol ; 253(3): 326-338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206391

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumour in children and is subdivided into four subgroups: WNT, SHH, Group 3, and Group 4. These molecular subgroups differ in their metastasis patterns and related prognosis rates. Conventional 2D cell culture methods fail to recapitulate these clinical differences. Realistic 3D models of the cerebellum are therefore necessary to investigate subgroup-specific functional differences and their role in metastasis and chemoresistance. A major component of the brain extracellular matrix (ECM) is the glycosaminoglycan hyaluronan. MB cell lines encapsulated in hyaluronan hydrogels grew as tumour nodules, with Group 3 and Group 4 cell lines displaying clinically characteristic laminar metastatic patterns and levels of chemoresistance. The glycoproteins, laminin and vitronectin, were identified as subgroup-specific, tumour-secreted ECM factors. Gels of higher complexity, formed by incorporation of laminin or vitronectin, revealed subgroup-specific adhesion and growth patterns closely mimicking clinical phenotypes. ECM subtypes, defined by relative levels of laminin and vitronectin expression in patient tissue microarrays and gene expression data sets, were able to identify novel high-risk MB patient subgroups and predict overall survival. Our hyaluronan model system has therefore allowed us to functionally characterize the interaction between different MB subtypes and their environment. It highlights the prognostic and pathological role of specific ECM factors and enables preclinical development of subgroup-specific therapies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cerebelares/patologia , Matriz Extracelular/patologia , Hidrogéis , Meduloblastoma/patologia , Modelos Anatômicos , Linhagem Celular Tumoral , Humanos
11.
J Struct Biol ; 211(1): 107513, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339763

RESUMO

The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/ultraestrutura , Membrana Celular/ultraestrutura , Lipídeos de Membrana/química , Conformação Proteica , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sítios de Ligação/genética , Membrana Celular/química , Membrana Celular/genética , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Hidrólise , Lipídeos de Membrana/genética , Camundongos , Simulação de Dinâmica Molecular , Nucleotídeos/química , Nucleotídeos/genética
12.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979415

RESUMO

ABCG2 is one of a triumvirate of human multidrug ATP binding cassette (ABC) transporters that are implicated in the defense of cells and tissues against cytotoxic chemicals, but these transporters can also confer chemotherapy resistance states in oncology. Understanding the mechanism of ABCG2 is thus imperative if we are to be able to counter its deleterious activity. The structure of ABCG2 and its related family members (ABCG5/G8) demonstrated that there were two interfaces between the nucleotide binding domains (NBD). In addition to the canonical ATP "sandwich-dimer" interface, there was a second contact region between residues at the C-terminus of the NBD. We investigated this second interface by making mutations to a series of residues that are in close interaction with the opposite NBD. Mutated ABCG2 isoforms were expressed in human embryonic kidney (HEK) 293T cells and analysed for targeting to the membrane, drug transport, and ATPase activity. Mutations to this second interface had a number of effects on ABCG2, including altered drug specificity, altered drug transport, and, in two mutants, a loss of ATPase activity. The results demonstrate that this region is particularly sensitive to mutation and can impact not only direct, local NBD events (i.e., ATP hydrolysis) but also the allosteric communication to the transmembrane domains and drug transport.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico/genética , Embrião de Galinha , Clorofila/análogos & derivados , Clorofila/metabolismo , Resistência a Múltiplos Medicamentos/genética , Células HEK293 , Humanos , Hidrólise , Mitoxantrona/metabolismo , Mutação , Domínios Proteicos/genética , Inibidores da Topoisomerase II/metabolismo
13.
Sci Rep ; 9(1): 10290, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311995

RESUMO

Three of the hallmarks of poor prognosis in paediatric ependymoma are drug resistance, local invasion and recurrence. We hypothesised that these hallmarks were due to the presence of a sub-population of cancer stem cells expressing the multi-drug efflux transporter ABCB1. ABCB1 gene expression was observed in 4 out of 5 paediatric ependymoma cell lines and increased in stem cell enriched neurospheres. Functional inhibition of ABCB1 using vardenafil or verapamil significantly (p ≤ 0.05-0.001) potentiated the response to three chemotherapeutic drugs (vincristine, etoposide and methotrexate). Both inhibitors were also able to significantly reduce migration (p ≤ 0.001) and invasion (p ≤ 0.001). We demonstrate that ABCB1 positive patients from an infant chemotherapy-led trial (CNS9204) had a shorter mean event free survival (EFS) (2.7 versus 8.6 years; p = 0.007 log-rank analysis) and overall survival (OS) (5.4 versus 12 years; p = 0.009 log-rank analysis). ABCB1 positivity also correlated with reduced event free survival in patients with incompletely resected tumours who received chemotherapy across CNS9204 and CNS9904 (a radiotherapy-led SIOP 1999-04 trial cohort; p = 0.03). ABCB1 is a predictive marker of chemotherapy response in ependymoma patients and vardenafil, currently used to treat paediatric pulmonary hypertension in children, could be repurposed to reduce chemoresistance, migration and invasion in paediatric ependymoma patients at non-toxic concentrations.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ependimoma/patologia , Células-Tronco Neoplásicas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pré-Escolar , Sinergismo Farmacológico , Ependimoma/genética , Ependimoma/metabolismo , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Metotrexato/farmacologia , Invasividade Neoplásica , Prognóstico , Análise de Sobrevida , Regulação para Cima , Dicloridrato de Vardenafila/farmacologia , Verapamil/farmacologia , Vincristina/farmacologia
14.
Drug Metab Dispos ; 46(12): 1886-1899, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266733

RESUMO

The widespread expression and polyspecificity of the multidrug ABCG2 efflux transporter make it an important determinant of the pharmacokinetics of a variety of substrate drugs. Null ABCG2 expression has been linked to the Junior blood group. Polymorphisms affecting the expression or function of ABCG2 may have clinically important roles in drug disposition and efficacy. The most well-studied single nucleotide polymorphism (SNP), Q141K (421C>A), is shown to decrease ABCG2 expression and activity, resulting in increased total drug exposure and decreased resistance to various substrates. The effect of Q141K can be rationalized by inspection of the ABCG2 structure, and the effects of this SNP on protein processing may make it a target for pharmacological intervention. The V12M SNP (34G>A) appears to improve outcomes in cancer patients treated with tyrosine kinase inhibitors, but the reasons for this are yet to be established, and this residue's role in the mechanism of the protein is unexplored by current biochemical and structural approaches. Research into the less-common polymorphisms is confined to in vitro studies, with several polymorphisms shown to decrease resistance to anticancer agents such as SN-38 and mitoxantrone. In this review, we present a systematic analysis of the effects of ABCG2 polymorphisms on ABCG2 function and drug pharmacokinetics. Where possible, we use recent structural advances to present a molecular interpretation of the effects of SNPs and indicate where we need further in vitro experiments to fully resolve how SNPs impact ABCG2 function.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Preparações Farmacêuticas/metabolismo , Farmacocinética , Polimorfismo de Nucleotídeo Único , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos , Humanos
15.
Biochem J ; 475(9): 1553-1567, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29661915

RESUMO

Multidrug binding and transport by the ATP-binding cassette transporter ABCG2 is a factor in the clinical resistance to chemotherapy in leukaemia, and a contributory factor to the pharmacokinetic profiles of many other prescribed drugs. Despite its importance, the structural basis of multidrug transport, i.e. the ability to transport multiple distinct chemicals, has remained elusive. Previous research has shown that at least two residues positioned towards the cytoplasmic end of transmembrane helix 3 (TM3) of the transporter play a role in drug transport. We hypothesised that other residues, either in the longitudinal span of TM3, or a perpendicular slice through the intracellular end of other TM helices would also contribute to drug binding and transport by ABCG2. Single-point mutant isoforms of ABCG2 were made at ∼30 positions and were analysed for effects on protein expression, localisation (western blotting, confocal microscopy) and function (flow cytometry) in a mammalian stable cell line expression system. Our data were interpreted in terms of recent structural data on the ABCG protein subfamily and enabled us to propose a surface-binding site for the drug mitoxantrone (MX) as well as a second, buried site for the same drug. Further mutational analysis of residues that spatially separate these two sites prompts us to suggest a molecular and structural pathway for MX transport by ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Bleomicina/metabolismo , Resistência a Múltiplos Medicamentos/genética , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Substituição de Aminoácidos , Transporte Biológico , Domínio Catalítico , Humanos , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/metabolismo , Conformação Proteica
16.
Biochem Pharmacol ; 123: 19-28, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729218

RESUMO

The multidrug resistance P-glycoprotein (P-gp) is characterised by the ability to bind and/or transport an astonishing array of drugs. This poly-specificity is imparted by at least four pharmacologically distinct binding sites within the transmembrane domain. Whether or not these sites are spatially distinct has remained unclear. Biochemical and structural investigations have implicated a central cavity as the likely location for the binding sites. In the present investigation, a number of contact residues that are involved in drug binding were identified through biochemical assays using purified, reconstituted P-gp. Drugs were selected to represent each of the four pharmacologically distinct sites. Contact residues important in rhodamine123 binding were identified in the central cavity of P-gp. However, contact residues for the binding of vinblastine, paclitaxel and nicardipine were located at the lipid-protein interface rather than the central cavity. A key residue (F978) within the central cavity is believed to be involved in coupling drug binding to nucleotide hydrolysis. Data observed in this investigation suggest the presence of spatially distinct drug binding sites connecting through to a single translocation pore in the central cavity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sítios de Ligação , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Humanos , Mariposas , Mutagênese Sítio-Dirigida , Nicardipino/metabolismo , Paclitaxel/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rodamina 123/metabolismo , Vimblastina/metabolismo
17.
Biochim Biophys Acta ; 1863(1): 19-29, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26453803

RESUMO

ABCG2 is one of three human ATP binding cassette (ABC) transporters involved in the export from cells of a chemically and structurally diverse range of compounds. This multidrug efflux capability, together with a broad tissue distribution in the body, means that ABCG2 exerts a range of effects on normal physiology such as kidney urate transport, as well as contributing towards the pharmacokinetic profiles of many exogenous drugs. The primary sequence of ABCG2 contains only half the number of domains required for a functioning ABC transporter and so it must oligomerise in order to function, yet its oligomeric state in intact cell membranes remains uncharacterized. We have analysed ABCG2 in living cell membranes using a combination of fluorescence correlation spectroscopy, photon counting histogram analysis, and stepwise photobleaching to demonstrate a predominantly tetrameric structure for ABCG2 in the presence or absence of transport substrates. These results provide the essential basis for exploring pharmacological manipulation of oligomeric state as a strategy to modulate ABCG2 activity in future selective therapeutics.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Rim/metabolismo , Imagem Molecular , Proteínas de Neoplasias/metabolismo , Multimerização Proteica/fisiologia , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo/fisiologia , Membrana Celular/genética , Células HEK293 , Humanos , Rim/citologia , Proteínas de Neoplasias/genética , Estrutura Quaternária de Proteína
18.
Biochem Soc Trans ; 43(5): 1018-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517917

RESUMO

Tumours of the central nervous system are the most common solid tumour, accounting for a quarter of the 1500 cases of childhood cancer diagnosed each year in the U.K. They are the most common cause of cancer-related death in children. Treatment consists of surgery followed by adjuvant chemotherapy and/or radiotherapy. Survival rates have generally increased, but many survivors suffer from radiotherapy-related neurocognitive and endocrine side effects as well as an increased risk of secondary cancer. Adjuvant chemotherapy is normally given in combination to circumvent chemoresistance, but several studies have demonstrated it to be ineffective in the absence of radiotherapy. The identification of children with drug-resistant disease at the outset could allow stratification of those that are potentially curable by chemotherapy alone. Ultimately, however, what is required is a means to overcome this drug resistance and restore the effectiveness of chemotherapy. Medulloblastomas and ependymomas account for over 30% of paediatric brain tumours. Advances in neurosurgery, adjuvant radiotherapy and chemotherapy have led to improvements in 5-year overall survival rates. There remain, however, significant numbers of medulloblastoma patients that have intrinsically drug-resistant tumours and/or present with disseminated disease. Local relapse in ependymoma is also common and has an extremely poor prognosis with only 25% of children surviving first relapse. Each of these is consistent with the acquisition of drug and radiotherapy resistance. Since the majority of chemotherapy drugs currently used to treat these patients are transport substrates for ATP-binding cassette sub-family B member 1 (ABCB1) we will address the hypothesis that ABCB1 expression underlies this drug resistance.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Cerebelares/metabolismo , Ependimoma/metabolismo , Meduloblastoma/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Transporte Biológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Cerebelares/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos , Ependimoma/tratamento farmacológico , Humanos , Meduloblastoma/tratamento farmacológico
19.
Cancer Chemother Pharmacol ; 76(4): 853-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26351135

RESUMO

PURPOSE: Multidrug efflux pumps such as ABCG2 confer drug resistance to a number of cancer types, leading to poor prognosis and outcome. To date, the strategy of directly inhibiting multidrug efflux pumps in order to overcome drug resistance in cancer has been unsuccessful. An alternative strategy is to target proteins involved in the regulation of multidrug efflux pump activity or expression. Pim1 kinase has been demonstrated to phosphorylate ABCG2, promote its oligomerisation and contribute to its ability to confer drug resistance. METHODS: In the present manuscript, imidazo-pyridazine-based inhibitors of Pim1 were examined for their ability to overcome ABCG2-mediated drug resistance. Drug efficacy was measured as a cytotoxic response or an effect on transport by ABCG2. Protein expression patterns were assessed using western immuno-blotting. RESULTS: The two Pim1 inhibitors increased the potency of flavopiridol, mitoxantrone, topotecan and doxorubicin, specifically in ABCG2-expressing cells. This effect was associated with an increase in the cellular accumulation of [(3)H]-mitoxantrone, suggesting direct impairment of the transporter. However, prolonged pre-incubation with the studied inhibitors greatly enhanced the effect on mitoxantrone accumulation. The inhibitors caused a significant time-dependent reduction in the expression of ABCG2 in the resistant cells, an effect that would improve drug efficacy. CONCLUSION: Consequently, it appears that the Pim1 inhibitors display a dual-mode effect on ABCG2-expressing cancer cells. This may provide a powerful new strategy in overcoming drug resistance by targeting proteins that regulate expression of efflux pumps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Drogas em Investigação/farmacologia , Imidazóis/farmacologia , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Piridazinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Cinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Biosci Rep ; 35(4)2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26294421

RESUMO

ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be 'rescued' by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Evolução Molecular Direcionada , Mutação de Sentido Incorreto , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Substituição de Aminoácidos , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA