Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Lipid Res ; 65(4): 100526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431115

RESUMO

ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.


Assuntos
Tecido Adiposo , Proteína 4 Semelhante a Angiopoietina , Fígado , Hormônios Peptídicos , Caracteres Sexuais , Animais , Masculino , Feminino , Humanos , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Camundongos , Fígado/metabolismo , Tecido Adiposo/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Proteína 8 Semelhante a Angiopoietina , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Camundongos Endogâmicos C57BL
2.
Prog Lipid Res ; 92: 101250, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619883

RESUMO

Macrophages are essential innate immune cells and form our first line of immune defense. Also known as professional phagocytes, macrophages interact and take up various particles, including lipids. Defective lipid handling can drive excessive lipid accumulation leading to foam cell formation, a key feature of various cardiometabolic conditions such as atherosclerosis, non-alcoholic fatty liver disease, and obesity. At the same time, intracellular lipid storage and foam cell formation can also be viewed as a protective and anti-lipotoxic mechanism against a lipid-rich environment and associated elevated lipid uptake. Traditionally, foam cell formation has primarily been linked to cholesterol uptake via native and modified low-density lipoproteins. However, other lipids, including non-esterified fatty acids and triacylglycerol (TAG)-rich lipoproteins (very low-density lipoproteins and chylomicrons), can also interact with macrophages. Recent studies have identified multiple pathways mediating TAG uptake and processing by macrophages, including endocytosis and receptor/transporter-mediated internalization and transport. This review will present the current knowledge of how macrophages take up different lipids and lipoprotein particles and address how TAG-rich lipoproteins are processed intracellularly. Understanding how macrophages take up and process different lipid species such as TAG is necessary to design future therapeutic interventions to correct excessive lipid accumulation and associated co-morbidities.


Assuntos
Ácidos Graxos , Macrófagos , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Lipoproteínas/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo
3.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269299

RESUMO

Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Neoplasias , Humanos , Proteína 4 Semelhante a Angiopoietina/farmacologia , Proteína 4 Semelhante a Angiopoietina/uso terapêutico , Angiopoietinas/farmacologia , Angiopoietinas/uso terapêutico , Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
4.
J Lipid Res ; 64(1): 100313, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372100

RESUMO

Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.


Assuntos
Lipase , Hormônios Peptídicos , Animais , Humanos , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Triglicerídeos/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
5.
PLoS Biol ; 20(8): e3001516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026438

RESUMO

Triglycerides are carried in the bloodstream as part of very low-density lipoproteins (VLDLs) and chylomicrons, which represent the triglyceride-rich lipoproteins. Triglyceride-rich lipoproteins and their remnants contribute to atherosclerosis, possibly by carrying remnant cholesterol and/or by exerting a proinflammatory effect on macrophages. Nevertheless, little is known about how macrophages process triglyceride-rich lipoproteins. Here, using VLDL-sized triglyceride-rich emulsion particles, we aimed to study the mechanism by which VLDL triglycerides are taken up, processed, and stored in macrophages. Our results show that macrophage uptake of VLDL-sized emulsion particles is dependent on lipoprotein lipase (LPL) and requires the lipoprotein-binding C-terminal domain but not the catalytic N-terminal domain of LPL. Subsequent internalization of VLDL-sized emulsion particles by macrophages is carried out by caveolae-mediated endocytosis, followed by triglyceride hydrolysis catalyzed by lysosomal acid lipase. It is shown that STARD3 is required for the transfer of lysosomal fatty acids to the ER for subsequent storage as triglycerides, while NPC1 likely is involved in promoting the extracellular efflux of fatty acids from lysosomes. Our data provide novel insights into how macrophages process VLDL triglycerides and suggest that macrophages have the remarkable capacity to excrete part of the internalized triglycerides as fatty acids.


Assuntos
Cavéolas , Ácidos Graxos , Emulsões , Endocitose , Lipoproteínas , Macrófagos , Triglicerídeos
6.
J Lipid Res ; 63(7): 100237, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667416

RESUMO

Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.


Assuntos
Glucose , Linfadenopatia , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Camundongos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Triglicerídeos
7.
Proc Natl Acad Sci U S A ; 119(12): e2114739119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302892

RESUMO

In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet­associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Humanos , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo
8.
Curr Opin Lipidol ; 32(6): 335-341, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581310

RESUMO

PURPOSE OF REVIEW: Elevated LDL-C and triglycerides are important risk factors for the development of atherosclerotic cardiovascular disease. Although effective therapies for lipid lowering exist, many people do not reach their treatment targets. In the last two decades, ANGPTL3 has emerged as a novel therapeutic target for lowering plasma LDL-C and triglycerides. Here, an overview of the recent literature on ANGPTL3 is provided, focusing on the therapeutic benefits of inactivation of ANGPTL3 via monoclonal antibodies, antisense oligonucleotides, and other more nascent approaches. In addition, the potential mechanisms by which ANGPTL3 inactivation lowers plasma LDL-C are discussed. RECENT FINDINGS: ANGPTL3 is a factor secreted by the liver that inhibits lipoprotein lipase and other lipases via the formation of a complex with the related protein ANGPTL8. Large-scale genetic studies in humans have shown that carriers of loss-of-function variants in ANGPTL3 have lower plasma LDL-C and triglyceride levels, and are at reduced risk of atherosclerotic cardiovascular disease. Clinical studies in patients with different forms of dyslipidemia have demonstrated that inactivation of ANGPTL3 using monoclonal antibodies or antisense oligonucleotides markedly lowers plasma LDL-C and triglyceride levels. SUMMARY: Anti-ANGPTL3 therapies hold considerable promise for reducing plasma LDL-C and triglycerides in selected patient groups.


Assuntos
Aterosclerose , Dislipidemias , Hormônios Peptídicos , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Dislipidemias/tratamento farmacológico , Humanos , Hormônios Peptídicos/uso terapêutico , Triglicerídeos/metabolismo
9.
Life Sci Alliance ; 4(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407998

RESUMO

Various forms of fasting and ketogenic diet have shown promise in (pre-)clinical studies to normalize body weight, improve metabolic health, and protect against disease. Recent studies suggest that ß-hydroxybutyrate (ßOHB), a fasting-characteristic ketone body, potentially acts as a signaling molecule mediating its beneficial effects via histone deacetylase inhibition. Here, we have investigated whether ßOHB, in comparison to the well-established histone deacetylase inhibitor butyrate, influences cellular differentiation and gene expression. In various cell lines and primary cell types, millimolar concentrations of ßOHB did not alter differentiation in vitro, as determined by gene expression and histological assessment, whereas equimolar concentrations of butyrate consistently impaired differentiation. RNA sequencing revealed that unlike butyrate, ßOHB minimally impacted gene expression in primary adipocytes, macrophages, and hepatocytes. However, in myocytes, ßOHB up-regulated genes involved in the TCA cycle and oxidative phosphorylation, while down-regulating genes belonging to cytokine and chemokine signal transduction. Overall, our data do not support the notion that ßOHB serves as a powerful signaling molecule regulating gene expression but suggest that ßOHB may act as a niche signaling molecule in myocytes.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Regulação da Expressão Gênica , Fibras Musculares Esqueléticas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Biomarcadores , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Microambiente Celular , Epigênese Genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Análise de Sequência de RNA
10.
Am J Physiol Cell Physiol ; 321(4): C585-C595, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288722

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify Adtrp, a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene. Adtrp was significantly upregulated by PPARα activation in mouse primary hepatocytes, liver slices, and whole liver. In addition, Adtrp was upregulated by PPARγ activation in 3L3-L1 adipocytes and in white adipose tissue. ChIP-SEQ identified a strong PPAR-binding site in the immediate upstream promoter of the Adtrp gene. Adenoviral-mediated hepatic overexpression of Adtrp in diet-induced obese mice caused a modest increase in plasma nonesterified fatty acids but did not influence diet-induced obesity, liver triglyceride levels, liver lipidomic profiles, liver transcriptomic profiles, plasma cholesterol, triglyceride, glycerol, and glucose levels. Moreover, hepatic Adtrp overexpression did not lead to significant changes in FAHFA levels in plasma or liver and did not influence glucose and insulin tolerance. Finally, hepatic overexpression of Adtrp did not influence liver triglycerides and levels of plasma metabolites after a 24-h fast. Taken together, our data suggest that despite being a PPAR-regulated gene, hepatic Adtrp does not seem to play a major role in lipid and glucose metabolism and does not regulate FAHFA levels.


Assuntos
Esterases/biossíntese , Glucose/metabolismo , Hepatócitos/enzimologia , Metabolismo dos Lipídeos , Lipídeos/sangue , Proteínas de Membrana/biossíntese , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Modelos Animais de Doenças , Indução Enzimática , Esterases/genética , Jejum/metabolismo , Feminino , Lipidômica , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/metabolismo
11.
Mol Metab ; 47: 101168, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465519

RESUMO

OBJECTIVE: Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. METHODS: We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). RESULTS: Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. CONCLUSIONS: Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Hepatócitos/metabolismo , Hipóxia/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos/metabolismo , Animais , Carcinoma Hepatocelular , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Expressão Gênica , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
13.
Mol Metab ; 40: 101033, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504883

RESUMO

OBJECTIVE: Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. METHODS: Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. RESULTS: Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (-60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (-94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (-79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. CONCLUSION: ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Jejum/metabolismo , Lipase Lipoproteica/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Proteína 4 Semelhante a Angiopoietina/fisiologia , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipase Lipoproteica/fisiologia , Masculino , Pessoa de Meia-Idade , Hormônios Peptídicos/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32417386

RESUMO

Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.


Assuntos
Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Neoplasias/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Homeostase , Humanos , Hipóxia/metabolismo , Lipase/metabolismo , Proteínas de Neoplasias/genética
15.
J Cell Physiol ; 235(12): 9851-9863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452584

RESUMO

Using an unbiased high-throughput microRNA (miRNA)-silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA-204-5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA-204-5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA-204-5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC-1α (3.71-fold; p < .01), predicted as an miR-204-5p target, as well as mitochondrial DNA copy number (p < .05) and citrate synthase activity (p = .06) were increased upon miRNA-204-5p silencing in C2C12 myotubes. Silencing of miRNA-204-5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q = .05), and reduced expression of the mitophagy marker FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA-204-5p silencing. Finally, miRNA-204-5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA-204-5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA-204-5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA-204-5p as an interesting modulator of skeletal muscle mitochondrial metabolism.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/genética , Biópsia , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitofagia/genética , Biogênese de Organelas , Oxirredução , Estresse Oxidativo/genética
16.
Cell Rep ; 30(6): 1811-1822.e6, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049012

RESUMO

Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.


Assuntos
Tecido Adiposo/fisiopatologia , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Humanos , Camundongos
17.
J Lipid Res ; 60(10): 1741-1754, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409739

RESUMO

Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4-/- mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4-/- mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4-/- mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.


Assuntos
Adipócitos/metabolismo , Proteína 4 Semelhante a Angiopoietina/deficiência , Proteína 4 Semelhante a Angiopoietina/genética , Técnicas de Inativação de Genes , Macrófagos/metabolismo , Animais , Respiração Celular , Ascite Quilosa/genética , Ascite Quilosa/patologia , Éxons/genética , Regulação da Expressão Gênica , Lipase Lipoproteica/metabolismo , Linfadenopatia/genética , Linfadenopatia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue
18.
Mol Nutr Food Res ; 63(19): e1900385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31327168

RESUMO

SCOPE: The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION: Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.


Assuntos
Colesterol/biossíntese , Gorduras na Dieta/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Ácidos Graxos trans/farmacologia , Células 3T3-L1 , Animais , Células CHO , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Colesterol/genética , Cricetulus , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácidos Oleicos/farmacologia
19.
BMC Genomics ; 20(1): 199, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30866796

RESUMO

BACKGROUND: Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα and CREB3L3 in regulating hepatic gene expression. Male wild-type, PPARα-/-, CREB3L3-/- and combined PPARα/CREB3L3-/- mice were subjected to a 16-h fast or 4 days of ketogenic diet. Whole genome expression analysis was performed on liver samples. RESULTS: Under conditions of overnight fasting, the effects of PPARα ablation and CREB3L3 ablation on plasma triglyceride, plasma ß-hydroxybutyrate, and hepatic gene expression were largely disparate, and showed only limited interdependence. Gene and pathway analysis underscored the importance of CREB3L3 in regulating (apo)lipoprotein metabolism, and of PPARα as master regulator of intracellular lipid metabolism. A small number of genes, including Fgf21 and Mfsd2a, were under dual control of PPARα and CREB3L3. By contrast, a strong interaction between PPARα and CREB3L3 ablation was observed during ketogenic diet feeding. Specifically, the pronounced effects of CREB3L3 ablation on liver damage and hepatic gene expression during ketogenic diet were almost completely abolished by the simultaneous ablation of PPARα. Loss of CREB3L3 influenced PPARα signalling in two major ways. Firstly, it reduced expression of PPARα and its target genes involved in fatty acid oxidation and ketogenesis. In stark contrast, the hepatoproliferative function of PPARα was markedly activated by loss of CREB3L3. CONCLUSIONS: These data indicate that CREB3L3 ablation uncouples the hepatoproliferative and lipid metabolic effects of PPARα. Overall, except for the shared regulation of a very limited number of genes, the roles of PPARα and CREB3L3 in hepatic lipid metabolism are clearly distinct and are highly dependent on dietary status.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Perfilação da Expressão Gênica/métodos , Fígado/crescimento & desenvolvimento , PPAR alfa/genética , Ácido 3-Hidroxibutírico/sangue , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Cetogênica , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Fígado/química , Masculino , Camundongos , PPAR alfa/metabolismo , Transdução de Sinais , Simportadores , Triglicerídeos/sangue , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma
20.
J Clin Lipidol ; 12(3): 773-783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29555209

RESUMO

BACKGROUND: Elevated plasma triglycerides are increasingly viewed as a causal risk factor for coronary artery disease. One protein that raises plasma triglyceride levels and that has emerged as a modulator of coronary artery disease risk is angiopoietin-like 4 (ANGPTL4). ANGPTL4 raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL), the enzyme that catalyzes the hydrolysis of circulating triglycerides on the capillary endothelium. OBJECTIVE: The objective of the present study was to assess the association between ANGPTL4 and LPL in human adipose tissue, and to examine the influence of nutritional status on ANGPTL4 expression. METHODS: We determined ANGPTL4 and LPL mRNA and protein levels in different adipose tissue depots in a large number of severely obese patients who underwent bariatric surgery. Furthermore, in 72 abdominally obese subjects, we measured ANGPTL4 and LPL mRNA levels in subcutaneous adipose tissue in the fasted and postprandial state. RESULTS: ANGPTL4 mRNA levels were highest in subcutaneous adipose tissue, whereas LPL mRNA levels were highest in mesenteric adipose tissue. ANGPTL4 and LPL mRNA levels were strongly positively correlated in the omental and subcutaneous adipose tissue depots. In contrast, ANGPTL4 and LPL protein levels were negatively correlated in subcutaneous adipose tissue, suggesting a suppressive effect of ANGPTL4 on LPL protein abundance in subcutaneous adipose tissue. ANGPTL4 mRNA levels were 38% higher in the fasted compared to the postprandial state. CONCLUSION: Our data provide valuable insights into the relationship between ANGPTL4 and LPL in human adipose tissue, as well as the physiological function and regulation of ANGPTL4 in humans.


Assuntos
Tecido Adiposo/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Estudos Transversais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Estado Nutricional , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA