Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Chemphyschem ; 25(1): e202300596, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37888491

RESUMO

Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.


Assuntos
Cisteína , Tionas , Cisteína/química , Simulação de Dinâmica Molecular , Domínio Catalítico , Simulação de Acoplamento Molecular
2.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113354

RESUMO

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Sítios de Ligação , Espectrometria de Massas em Tandem , Ligantes , Proteínas Repressoras/metabolismo
3.
Org Biomol Chem ; 21(44): 8829-8836, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917021

RESUMO

An asymmetric cyanine-type fluorescent dye was designed and synthesized via a versatile, multi-step process, aiming to conjugate with an Her2+ receptor specific antibody by an azide-alkyne click reaction. The aromaticity and the excitation and relaxation energetics of the fluorophore were characterized by computational methods. The synthesized dye exhibited excellent fluorescence properties for confocal microscopy, offering efficient applicability in in vitro imaging due to its merits such as a high molar absorption coefficient (36 816 M-1 cm-1), excellent brightness, optimal wavelength (627 nm), larger Stokes shift (26 nm) and appropriate photostability compared to cyanines. The conjugated cyanine-trastuzumab was constructed via an effective, metal-free, strain-promoted azide-alkyne click reaction leading to a regulated number of dyes being conjugated. This novel cyanine-labelled antibody was successfully applied for in vitro confocal imaging and flow cytometry of Her2+ tumor cells.


Assuntos
Azidas , Corantes Fluorescentes , Carbocianinas , Anticorpos , Alcinos , Microscopia Confocal
4.
Trends Pharmacol Sci ; 44(11): 802-816, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770315

RESUMO

Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.

5.
Nucleic Acids Res ; 51(W1): W542-W552, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207333

RESUMO

SH2 domains are key mediators of phosphotyrosine-based signalling, and therapeutic targets for diverse, mostly oncological, disease indications. They have a highly conserved structure with a central beta sheet that divides the binding surface of the protein into two main pockets, responsible for phosphotyrosine binding (pY pocket) and substrate specificity (pY + 3 pocket). In recent years, structural databases have proven to be invaluable resources for the drug discovery community, as they contain highly relevant and up-to-date information on important protein classes. Here, we present SH2db, a comprehensive structural database and webserver for SH2 domain structures. To organize these protein structures efficiently, we introduce (i) a generic residue numbering scheme to enhance the comparability of different SH2 domains, (ii) a structure-based multiple sequence alignment of all 120 human wild-type SH2 domain sequences and their PDB and AlphaFold structures. The aligned sequences and structures can be searched, browsed and downloaded from the online interface of SH2db (http://sh2db.ttk.hu), with functions to conveniently prepare multiple structures into a Pymol session, and to export simple charts on the contents of the database. Our hope is that SH2db can assist researchers in their day-to-day work by becoming a one-stop shop for SH2 domain related research.


Assuntos
Sistemas de Informação , Proteínas , Domínios de Homologia de src , Humanos , Sequência de Aminoácidos , Sítios de Ligação , Fosfotirosina/metabolismo , Ligação Proteica , Proteínas/metabolismo , Internet , Bases de Dados de Proteínas
6.
Eur J Med Chem ; 250: 115212, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842271

RESUMO

G12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12. Screening the library against KRasG12C using Ellman's free thiol assay, followed by protein NMR and cell viability assays, resulted in two potential inhibitor chemotypes. Characterization of these scaffolds in in vitro cellular- and in vivo xenograft models revealed them as promising starting points for covalent drug discovery programs.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Magy Onkol ; 67(3): 223-235, 2023 Sep 28.
Artigo em Húngaro | MEDLINE | ID: mdl-38484318

RESUMO

In silico studies raised the possibility that farnesyltransferase inhibitors (FTIs) may have antitumoral effects on KRAS mutant cancer cells. Accordingly, we have tested FTIs (tipifarnib and lonafarnib) in G12C mutant human cancer cell lines in vitro and in vivo. We have discovered that the combination of the two drugs has a synergistic antitumoral effect. Next, we have tested FTIs on G12D mutant human cancer cell lines and found that the combination has antitumoral effect in various preclinical cancer models. At last, we have also tested FTIs on G12V mutant human cancer cells and again we have detected antitumoral effects. We suggest that FTIs may have clinical relevance outside the HRAS mutant cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Farnesiltranstransferase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558935

RESUMO

Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.

9.
Eur J Med Chem ; 243: 114752, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126388

RESUMO

MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.


Assuntos
Alquil e Aril Transferases , Fosfomicina , Fosfomicina/química , Peptidoglicano , Escherichia coli , Cisteína , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Inibidores Enzimáticos/química
10.
Eur J Med Chem ; 231: 114163, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131537

RESUMO

Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas , Tauopatias , Cisteína , Desenho de Fármacos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Doenças Neurodegenerativas/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo
11.
ChemMedChem ; 17(2): e202100569, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632716

RESUMO

Maternal Embryonic Leucine-zipper Kinase (MELK) is a current oncotarget involved in a diverse range of human cancers, with the usage of MELK inhibitors being explored clinically. Here, we aimed to discover new MELK inhibitor chemotypes from our in-house compound library with a consensus-based virtual screening workflow, employing three screening concepts. After careful retrospective validation, prospective screening and in vitro enzyme inhibition testing revealed a series of [1,2,4]triazolo[1,5-b]isoquinolines as a new structural class of MELK inhibitors, with the lead compound of the series exhibiting a sub-micromolar inhibitory activity. The structure-activity relationship of the series was explored by testing further analogs based on a structure-guided selection process. Importantly, the present work marks the first disclosure of the synthesis and bioactivity of this class of compounds.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade
12.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
13.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576219

RESUMO

Histone methyltransferases (HMTs) have attracted considerable attention as potential targets for pharmaceutical intervention in various malignant diseases. These enzymes are known for introducing methyl marks at specific locations of histone proteins, creating a complex system that regulates epigenetic control of gene expression and cell differentiation. Here, we describe the identification of first-generation cell-permeable non-nucleoside type inhibitors of SETD2, the only mammalian HMT that is able to tri-methylate the K36 residue of histone H3. By generating the epigenetic mark H3K36me3, SETD2 is involved in the progression of acute myeloid leukemia. We developed a structure-based virtual screening protocol that was first validated in retrospective studies. Next, prospective screening was performed on a large library of commercially available compounds. Experimental validation of 22 virtual hits led to the discovery of three compounds that showed dose-dependent inhibition of the enzymatic activity of SETD2. Compound C13 effectively blocked the proliferation of two acute myeloid leukemia (AML) cell lines with MLL rearrangements and led to decreased H3K36me3 levels, prioritizing this chemotype as a viable chemical starting point for drug discovery projects.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Descoberta de Drogas , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Algoritmos , Área Sob a Curva , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Bases de Dados Factuais , Progressão da Doença , Epigênese Genética , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Leucemia Mieloide Aguda/enzimologia , Ligantes , Mutação , Preparações Farmacêuticas , Reprodutibilidade dos Testes
14.
Comput Struct Biotechnol J ; 19: 4486-4496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471494

RESUMO

The ubiquitin-proteasome system is responsible for the degradation of proteins and plays a critical role in key cellular processes. While the constitutive proteasome (cPS) is expressed in all eukaryotic cells, the immunoproteasome (iPS) is primarily induced during disease processes, and its inhibition is beneficial in the treatment of cancer, autoimmune disorders and neurodegenerative diseases. Oxathiazolones were reported to selectively inhibit iPS over cPS, and the inhibitory activity of several oxathiazolones against iPS was experimentally determined. However, the detailed mechanism of the chemical reaction leading to irreversible iPS inhibition and the key selectivity drivers are unknown, and separate characterization of the noncovalent and covalent inhibition steps is not available for several compounds. Here, we investigate the chemical reaction between oxathiazolones and the Thr1 residue of iPS by quantum mechanics/molecular mechanics (QM/MM) simulations to establish a plausible reaction mechanism and to determine the rate-determining step of covalent complex formation. The modelled binding mode and reaction mechanism are in line with the selective inhibition of iPS versus cPS by oxathiazolones. The kinact value of several ligands was estimated by constructing the potential of mean force of the rate-determining step by QM/MM simulations coupled with umbrella sampling. The equilibrium constant Ki of the noncovalent complex formation was evaluated by classical force field-based thermodynamic integration. The calculated Ki and kinact values made it possible to analyse the contribution of the noncovalent and covalent steps to the overall inhibitory activity. Compounds with similar intrinsic reactivities exhibit varying selectivities for iPS versus cPS owing to subtle differences in the binding modes that slightly affect Ki, the noncovalent affinity, and importantly alter kinact, the covalent reactivity of the bound compounds. A detailed understanding of the inhibitory mechanism of oxathiazolones is useful in designing iPS selective inhibitors with improved drug-like properties.

15.
Eur J Med Chem ; 219: 113455, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33894528

RESUMO

Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (ß5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the ß5i subunit was shown and selectivity against the ß5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the ß5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Oxazóis/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tionas/química
16.
Methods Mol Biol ; 2266: 73-88, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759121

RESUMO

The mechanism of action of covalent drugs involves the formation of a bond between their electrophilic warhead group and a nucleophilic residue of the protein target. The recent advances in covalent drug discovery have accelerated the development of computational tools for the design and characterization of covalent binders. Covalent docking algorithms can predict the binding mode of covalent ligands by modeling the bonds and interactions formed at the reaction site. Their scoring functions can estimate the relative binding affinity of ligands towards the target of interest, thus allowing virtual screening of compound libraries. However, most of the scoring schemes have no specific terms for the bond formation, and therefore it prevents the direct comparison of warheads with different intrinsic reactivity. Herein, we describe a protocol for the binding mode prediction of covalent ligands, a typical virtual screening of compound sets with a single warhead chemistry, and an alternative approach to screen libraries that include various warhead types, as applied in recently validated studies.


Assuntos
Química Computacional/métodos , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Algoritmos , Sítios de Ligação , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Software , Relação Estrutura-Atividade
17.
J Comput Aided Mol Des ; 35(2): 223-244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33458809

RESUMO

Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive docking method (Backus et al. in Nature 534:570-574, 2016) and extends it into a virtual screening tool by introducing facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when compound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measurements. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.


Assuntos
Alquil e Aril Transferases/química , Catepsina B/química , Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas p21(ras)/química , Sequência de Aminoácidos , Sítios de Ligação , Cisteína/química , Glutationa/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Software , Relação Estrutura-Atividade
18.
RSC Adv ; 11(21): 12802-12807, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423835

RESUMO

The first representatives of the new fluorescent boro-ß-carboline family were synthesized by the insertion of the difluoroboranyl group into the oxaza or diaza core. The resulting compounds showed good photophysical properties with fine Stokes-shifts in the range of 38-85 nm with blue and green emission. The energetics of the excitation states and molecular orbitals of two members were investigated by quantum chemical computations suggesting effects for the improved properties of diazaborinino-carbolines over oxazaborolo-carbolines. These properties nominated this chemotype as a new fluorophore for the development of fluorescent probes. As an example, diazaborinino-carbolines were used for the specific labeling of anti-Her2 antibody trastuzumab. The fluorescent conjugate showed a high fluorophore-antibody ratio and was confirmed as a useful tool for labeling and confocal microscopy imaging of tumour cells in vitro together with the ex vivo two-photon microscopy imaging of tumour slices.

19.
Chembiochem ; 22(4): 743-753, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33030752

RESUMO

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Cisteína/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteoma/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/química
20.
J Chem Inf Model ; 60(12): 6579-6594, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33295760

RESUMO

Covalent inhibitors have been gaining increased attention in drug discovery due to their beneficial properties such as long residence time, high biochemical efficiency, and specificity. Optimization of covalent inhibitors is a complex task that involves parallel monitoring of the noncovalent recognition elements and the covalent reactivity of the molecules to avoid potential idiosyncratic side effects. This challenge calls for special design protocols, including a variety of computational chemistry methods. Covalent inhibition proceeds through multiple steps, and calculating free energy changes of the subsequent binding events along the overall binding process would help us to better control the design of drug candidates. Inspired by the recent success of free energy calculations on reversible binders, we developed a complex protocol to compute free energies related to the noncovalent and covalent binding steps with thermodynamic integration and hybrid quantum mechanical/molecular mechanical (QM/MM) potential of mean force (PMF) calculations, respectively. In optimization settings, we examined two therapeutically relevant proteins complexed with congeneric sets of irreversible cysteine targeting covalent inhibitors. In the selectivity paradigm, we studied the irreversible binding of covalent inhibitors to phylogenetically close targets by a mutational approach. The results of the calculations are in good agreement with the experimental free energy values derived from the inhibition and kinetic constants (Ki and kinact) of the enzyme-inhibitor binding. The proposed method might be a powerful tool to predict the potency, selectivity, and binding mechanism of irreversible covalent inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos , Cinética , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA