Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Commun Signal ; 17(3): 1105-1111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014471

RESUMO

Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and ß-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.

2.
J Cell Commun Signal ; 17(3): 1097-1104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36944905

RESUMO

Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.

3.
J Cell Commun Signal ; 16(2): 301-310, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34714516

RESUMO

Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαqs, Gαq/Gα11, Gαi1, and Gß1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca2+ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132 . The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.

4.
Sci Rep ; 11(1): 2831, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531582

RESUMO

The milk and milk products from cows reared under grazing system are believed to be healthier and hence have high demand compared to milk from cows reared in the non-grazing system. However, the effect of grazing on milk metabolites, specifically lipids has not been fully understood. In this study, we used acetonitrile precipitation and methanol:chloroform methods for extracting the milk metabolites followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) run to identify the different metabolites between the milk of grazing and non-grazing early lactating Malnad Gidda cows. Various carbohydrates, amino acids, nucleosides and vitamin derivatives were found to be differentially abundant in grazing cows. A total of 35 metabolites were differentially regulated (fold change above 1.5) between the two groups. Tyrosyl-threonine, histidinyl-cysteine, 1-methyladenine, L-cysteine and selenocysteine showed fold change above 3 in grazing cows. The lipid profile of milk showed a lesser difference between grazing and non-grazing cows as compared to polar metabolites. To the best of our knowledge, this is the largest inventory of milk metabolomics data of an Indian cattle (Bos indicus) breed. We believe that our study would help to emerge a field of Nutri-metabolomics and veterinary omics research.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Indústria de Laticínios/métodos , Comportamento Alimentar/fisiologia , Leite/química , Animais , Bovinos , Feminino , Índia , Metabolômica/métodos , Leite/metabolismo
5.
Sci Rep ; 9(1): 18793, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827134

RESUMO

Epidermal growth factor receptor (EGFR) targeted therapies have shown limited efficacy in head and neck squamous cell carcinoma (HNSCC) patients despite its overexpression. Identifying molecular mechanisms associated with acquired resistance to EGFR-TKIs such as erlotinib remains an unmet need and a therapeutic challenge. In this study, we employed an integrated multi-omics approach to delineate mechanisms associated with acquired resistance to erlotinib by carrying out whole exome sequencing, quantitative proteomic and phosphoproteomic profiling. We observed amplification of several genes including AXL kinase and transcription factor YAP1 resulting in protein overexpression. We also observed expression of constitutively active mutant MAP2K1 (p.K57E) in erlotinib resistant SCC-R cells. An integrated analysis of genomic, proteomic and phosphoproteomic data revealed alterations in MAPK pathway and its downstream targets in SCC-R cells. We demonstrate that erlotinib-resistant cells are sensitive to MAPK pathway inhibition. This study revealed multiple genetic, proteomic and phosphoproteomic alterations associated with erlotinib resistant SCC-R cells. Our data indicates that therapeutic targeting of MAPK pathway is an effective strategy for treating erlotinib-resistant HNSCC tumors.


Assuntos
Antineoplásicos/uso terapêutico , Cloridrato de Erlotinib/uso terapêutico , MAP Quinase Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Genômica , Humanos , Redes e Vias Metabólicas , Fenótipo , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Sequenciamento Completo do Genoma
6.
J Cell Commun Signal ; 12(4): 745-751, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191398

RESUMO

Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at ( http://www.netpath.org/pathways?path_id=NetPath_32 ). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.

7.
J Cell Commun Signal ; 12(4): 731-735, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30043327

RESUMO

The monoamine neurotransmitter, 5-Hydroxytryptamine or serotonin, is derived from tryptophan and synthesized both centrally and systemically. Fourteen structurally and functionally distinct receptor subtypes have been identified for serotonin, each of which mediates the neurotransmitter's effects through a range of downstream signaling molecules and effectors. Although it is most frequently described for its role in the etiology of neuropsychiatric and mood disorders, serotonin has been implicated in a slew of fundamental physiological processes, including apoptosis, mitochondrial biogenesis, cell proliferation and migration. Its roles as the neurotransmitter have also emerged in pathogenic conditions ranging from anorexia nervosa to cancer. This has necessitated the understanding of the signaling mechanisms underlying the serotonergic system, which led us to construct a consolidative pathway map, which will provide as a resource for future biomedical investigation on this pathway. Using a set of stringent NetPath annotation criteria, we manually curated molecular reactions associated with serotonin and its receptors from publicly available literature; the reaction categories included molecular associations, activation/inhibition, post-translation modification, transport, and gene regulation at transcription and translational level. We identified 90 molecules in serotonin-serotonin receptor pathway. We submitted the curated data to NetPath, a publicly available database of human signaling pathways, in order to enable the wider scientific community to readily access data and contribute further to this pathway.

8.
J Cell Commun Signal ; 12(4): 737-743, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039510

RESUMO

Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.

9.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 712-721, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29654978

RESUMO

Leptospira, the causative agent of leptospirosis is known to have many proteases with potential to degrade extracellular matrix. However, a multipronged approach to identify, classify, characterize and elucidate their role has not been attempted. Our proteomic approach using high-resolution LC-MS/MS analysis of Triton X-114 fractions of Leptospira interrogans resulted in the identification of 104 proteases out of 130 proteases predicted by MEROPS. In Leptospira approximately 3.5% of the genome complements for proteases, which include catalytic types of metallo-, serine-, cysteine-, aspartic-, threonine- and asparagine- peptidases. Comparison of proteases from different serovars revealed that M04, M09B, M14A, M75, M28A, A01 and U73 protease families are exclusively present in pathogenic form. The M23 and S33 protease families are represented with >14 members in Leptospira. The differential expression under physiological temperature (37 °C) and osmolarity (300 mOsM) showed that proteases belonging to the catalytic type of Metallo-peptidases are upregulated significantly in pathogenic conditions. In silico prediction and characterization of the proteases revealed that several proteases are membrane anchored and secretory, classical as well as non-classical system. The study demonstrates the diversity and complexity of proteases, while maintaining conservation across the serovars in Leptospira and their differential expression under pathogenic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Leptospira interrogans/enzimologia , Peptídeo Hidrolases/metabolismo , Proteômica/métodos , Proteínas de Bactérias/genética , Cromatografia Líquida , Biologia Computacional , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Leptospira interrogans/genética , Concentração Osmolar , Peptídeo Hidrolases/genética , Filogenia , Especificidade por Substrato , Espectrometria de Massas em Tandem , Temperatura
10.
J Cell Commun Signal ; 12(4): 709-721, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29480433

RESUMO

Smoking is the leading cause of preventable death worldwide. Though cigarette smoke is an established cause of head and neck cancer (including oral cancer), molecular alterations associated with chronic cigarette smoke exposure are poorly studied. To understand the signaling alterations induced by chronic exposure to cigarette smoke, we developed a cell line model by exposing normal oral keratinocytes to cigarette smoke for a period of 12 months. Chronic exposure to cigarette smoke resulted in increased cellular proliferation and invasive ability of oral keratinocytes. Proteomic and phosphoproteomic analyses showed dysregulation of several proteins involved in cellular movement and cytoskeletal reorganization in smoke exposed cells. We observed overexpression and hyperphosphorylation of protein kinase N2 (PKN2) in smoke exposed cells as well as in a panel of head and neck cancer cell lines established from smokers. Silencing of PKN2 resulted in decreased colony formation, invasion and migration in both smoke exposed cells and head and neck cancer cell lines. Our results indicate that PKN2 plays an important role in oncogenic transformation of oral keratinocytes in response to cigarette smoke. The current study provides evidence that PKN2 can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients with a history of smoking.

11.
Nat Commun ; 8(1): 63, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680058

RESUMO

Calcium Dependent Protein Kinases are key effectors of calcium signaling in malaria parasite. PfCDPK1 is critical for asexual development of Plasmodium falciparum, but its precise function and substrates remain largely unknown. Using a conditional knockdown strategy, we here establish that this kinase is critical for the invasion of host erythrocytes. Furthermore, using a multidisciplinary approach involving comparative phosphoproteomics we gain insights into the underlying molecular mechanisms. We identify substrates of PfCDPK1, which includes proteins of Inner Membrane Complex and glideosome-actomyosin motor assembly. Interestingly, PfCDPK1 phosphorylates PfPKA regulatory subunit (PfPKA-R) and regulates PfPKA activity in the parasite, which may be relevant for the process of invasion. This study delineates the signaling network of PfCDPK1 and sheds light on mechanisms via which it regulates invasion.Calcium dependent protein kinase 1 (CDPK1) plays an important role in asexual development of Plasmodium falciparum. Using phosphoproteomics and conditional knockdown of CDPK1, the authors here identify CDPK1 substrates and a cross-talk between CDPK1 and PKA, and show the role of CDPK1 in parasite invasion.


Assuntos
Eritrócitos/parasitologia , Regulação da Expressão Gênica/fisiologia , Plasmodium falciparum/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Organismos Geneticamente Modificados , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Subunidades Proteicas , Proteínas de Protozoários/genética
12.
Clin Proteomics ; 13: 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799869

RESUMO

BACKGROUND: Retinoblastoma is an ocular neoplastic cancer caused primarily due to the mutation/deletion of RB1 gene. Due to the rarity of the disease very limited information is available on molecular changes in primary retinoblastoma. High throughput analysis of retinoblastoma transcriptome is available however the proteomic landscape of retinoblastoma remains unexplored. In the present study we used high resolution mass spectrometry-based quantitative proteomics to identify proteins associated with pathogenesis of retinoblastoma. METHODS: We used five pooled normal retina and five pooled retinoblastoma tissues to prepare tissue lysates. Equivalent amount of proteins from each group was trypsin digested and labeled with iTRAQ tags. The samples were analyzed on Orbitrap Velos mass spectrometer. We further validated few of the differentially expressed proteins by immunohistochemistry on primary tumors. RESULTS: We identified and quantified a total of 3587 proteins in retinoblastoma when compared with normal adult retina. In total, we identified 899 proteins that were differentially expressed in retinoblastoma with a fold change of ≥2 of which 402 proteins were upregulated and 497 were down regulated. Insulin growth factor 2 mRNA binding protein 1 (IGF2BP1), chromogranin A, fetuin A (ASHG), Rac GTPase-activating protein 1 and midkine that were found to be overexpressed in retinoblastoma were further confirmed by immunohistochemistry by staining 15 independent retinoblastoma tissue sections. We further verified the effect of IGF2BP1 on cell proliferation and migration capability of a retinoblastoma cell line using knockdown studies. CONCLUSIONS: In the present study mass spectrometry-based quantitative proteomic approach was applied to identify proteins differentially expressed in retinoblastoma tumor. This study identified the mitochondrial dysfunction and lipid metabolism pathways as the major pathways to be deregulated in retinoblastoma. Further knockdown studies of IGF2BP1 in retinoblastoma cell lines revealed it as a prospective therapeutic target for retinoblastoma.

13.
Mol Biosyst ; 11(9): 2529-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26181685

RESUMO

Cryptococcal meningitis is the most common opportunistic fungal infection causing morbidity and mortality (>60%) in HIV-associated immunocompromised individuals caused by Cryptococcus neoformans. Molecular mechanisms of cryptococcal infection in brain have been studied using experimental animal models and cell lines. There are limited studies for the molecular understanding of cryptococcal meningitis in human brain. The proteins involved in the process of invasion and infection in human brain still remains obscure. To this end we carried out mass spectrometry-based quantitative proteomics of frontal lobe brain tissues from cryptococcal meningitis patients and controls to identify host proteins that are associated with the pathogenesis of cryptococcal meningitis. We identified 317 proteins to be differentially expressed (≥2-fold) from a total of 3423 human proteins. We found proteins involved in immune response and signal transduction to be differentially expressed in response to cryptococcal infection in human brain. Immune response proteins including complement factors, major histocompatibility proteins, proteins previously known to be involved in fungal invasion to brain such as caveolin 1 and actin were identified to be differentially expressed in cryptococcal meningitis brain tissues co-infected with HIV. We also validated the expression status of 5 proteins using immunohistochemistry. Overexpression of major histocompatibility complexes, class I, B (HLA-B), actin alpha 2 smooth muscle aorta (ACTA2) and caveolin 1 (CAV1) and downregulation of peripheral myelin protein 2 (PMP2) and alpha crystallin B chain (CRYAB) in cryptococcal meningitis were confirmed by IHC-based validation experiments. This study provides the brain proteome profile of cryptococcal meningitis co-infected with HIV for a better understanding of the host response associated with the disease.


Assuntos
Coinfecção , Cryptococcus neoformans/fisiologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno , Meningite Criptocócica/metabolismo , Proteoma , Proteômica , Biologia Computacional/métodos , Humanos , Imuno-Histoquímica , Meningite Criptocócica/genética , Meningite Criptocócica/microbiologia , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
J Cell Commun Signal ; 9(3): 291-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077014

RESUMO

Interleukin-17 (IL-17) belongs to a relatively new family of cytokines that has garnered attention as the signature cytokine of Th17 cells. This cytokine family consists of 6 ligands, which bind to 5 receptor subtypes and induce downstream signaling. Although the receptors are ubiquitously expressed, cellular responses to ligands vary across tissues. The cytokine family is associated with various autoimmune disorders including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, asthma and psoriasis in addition to being implicated in the pathogenesis of cancer. In addition, this family plays a role in host defense against bacterial and fungal infections. The signaling mechanisms of the IL-17 family of proinflammatory cytokines are not well explored. In this study, we present a resource of literature-annotated reactions induced by IL-17. The reactions are catalogued under 5 categories, namely; molecular association, catalysis, transport, activation/inhibition and gene regulation. A total of 93 molecules and 122 reactions have been annotated. The IL-17 pathway is freely available through NetPath, a resource of signal transduction pathways previously developed by our group.

15.
J Proteomics ; 127(Pt A): 80-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952687

RESUMO

Gastric adenocarcinoma is an aggressive cancer with poor prognosis. Blood based biomarkers of gastric cancer have the potential to improve diagnosis and monitoring of these tumors. Proteins that show altered levels in the circulation of gastric cancer patients could prove useful as putative biomarkers. We used an iTRAQ-based quantitative proteomic approach to identify proteins that show altered levels in the sera of patients with gastric cancer. Our study resulted in identification of 643 proteins, of which 48 proteins showed increased levels and 11 proteins showed decreased levels in serum from gastric cancer patients compared to age and sex matched healthy controls. Proteins that showed increased expression in gastric cancer included inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Mannose-binding protein C (MBL2), sex hormone-binding globulin (SHBG), insulin-like growth factor-binding protein 2 (IGFBP2), serum amyloid A protein (SAA1), Orosomucoid 1 (ORM1) and extracellular superoxide dismutase [Cu-Zn] (SOD3). We used multiple reaction monitoring assays and validated elevated levels of ITIH4 and SAA1 proteins in serum from gastric cancer patients. BIOLOGICAL SIGNIFICANCE: Gastric cancer is a highly aggressive cancer associated with high mortality. Serum-based biomarkers are of considerable interest in diagnosis and monitoring of various diseases including cancers. Gastric cancer is often diagnosed at advanced stages resulting in poor prognosis and high mortality. Pathological diagnosis using biopsy specimens remains the gold standard for diagnosis of gastric cancer. Serum-based biomarkers are of considerable importance as they are minimally invasive. In this study, we carried out quantitative proteomic profiling of serum from gastric cancer patients to identify proteins that show altered levels in gastric cancer patients. We identified more than 50 proteins that showed altered levels in gastric cancer patient sera. Validation in a large cohort of well classified patient samples would prove useful in identifying novel blood based biomarkers for gastric cancers. This article is part of a Special Issue entitled: Proteomics in India.


Assuntos
Adenocarcinoma/sangue , Biomarcadores Tumorais/sangue , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/sangue , Neoplasias Gástricas/sangue , Feminino , Humanos , Masculino
16.
J Proteomics ; 127(Pt A): 96-102, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25982385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers with poor prognosis. Here, we carried out liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS)-based untargeted metabolomic analysis of ESCC serum samples. Statistical analysis resulted in the identification of 652 significantly dysregulated molecular features in serum from ESCC patients as compared to the healthy subjects. Phosphatidylcholines were identified as a major class of dysregulated metabolites in this study suggesting potential perturbation of phosphocholine metabolism in ESCC. By using a targeted MS/MS approach both in positive and negative mode, we were able to characterize and confirm the structure of seven metabolites. Our study describes a quantitative LC-MS approach for characterizing dysregulated lipid metabolism in ESCC. BIOLOGICAL SIGNIFICANCE: Altered metabolism is a hallmark of cancer. We carried out (LC-MS)-based untargeted metabolomic profiling of serum from esophageal squamous cell carcinoma (ESCC) patients to characterize dysregulated metabolites. Phosphatidylcholine metabolism was found to be significantly altered in ESCC. Our study illustrates the use of mass spectrometry-based metabolomic analysis to characterize molecular alterations associated with ESCC. This article is part of a Special Issue entitled: Proteomics in India.


Assuntos
Carcinoma de Células Escamosas/sangue , Neoplasias Esofágicas/sangue , Metabolômica , Fosfatidilcolinas/sangue , Adulto , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
17.
Genome Res ; 21(11): 1872-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795387

RESUMO

Anopheles gambiae is a major mosquito vector responsible for malaria transmission, whose genome sequence was reported in 2002. Genome annotation is a continuing effort, and many of the approximately 13,000 genes listed in VectorBase for Anopheles gambiae are predictions that have still not been validated by any other method. To identify protein-coding genes of An. gambiae based on its genomic sequence, we carried out a deep proteomic analysis using high-resolution Fourier transform mass spectrometry for both precursor and fragment ions. Based on peptide evidence, we were able to support or correct more than 6000 gene annotations including 80 novel gene structures and about 500 translational start sites. An additional validation by RT-PCR and cDNA sequencing was successfully performed for 105 selected genes. Our proteogenomic analysis led to the identification of 2682 genome search-specific peptides. Numerous cases of encoded proteins were documented in regions annotated as intergenic, introns, or untranslated regions. Using a database created to contain potential splice sites, we also identified 35 novel splice junctions. This is a first report to annotate the An. gambiae genome using high-accuracy mass spectrometry data as a complementary technology for genome annotation.


Assuntos
Anopheles/genética , Anopheles/metabolismo , Processamento Alternativo , Animais , Mapeamento Cromossômico , Códon de Iniciação , Éxons , Genes de Insetos , Genômica , Íntrons , Espectrometria de Massas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/genética , Proteômica , Sítios de Splice de RNA , Reprodutibilidade dos Testes , Regiões não Traduzidas/genética
18.
Nucleic Acids Res ; 37(Database issue): D767-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18988627

RESUMO

Human Protein Reference Database (HPRD--http://www.hprd.org/), initially described in 2003, is a database of curated proteomic information pertaining to human proteins. We have recently added a number of new features in HPRD. These include PhosphoMotif Finder, which allows users to find the presence of over 320 experimentally verified phosphorylation motifs in proteins of interest. Another new feature is a protein distributed annotation system--Human Proteinpedia (http://www.humanproteinpedia.org/)--through which laboratories can submit their data, which is mapped onto protein entries in HPRD. Over 75 laboratories involved in proteomics research have already participated in this effort by submitting data for over 15,000 human proteins. The submitted data includes mass spectrometry and protein microarray-derived data, among other data types. Finally, HPRD is also linked to a compendium of human signaling pathways developed by our group, NetPath (http://www.netpath.org/), which currently contains annotations for several cancer and immune signaling pathways. Since the last update, more than 5500 new protein sequences have been added, making HPRD a comprehensive resource for studying the human proteome.


Assuntos
Bases de Dados de Proteínas , Proteoma/metabolismo , Proteômica , Motivos de Aminoácidos , Humanos , Fosforilação , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteoma/análise , Proteoma/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA