Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Rheumatol ; 34 Suppl 100(5): 23-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886502

RESUMO

OBJECTIVES: γδ T cells of the Vγ9Vδ2 subtype secrete anti-fibrotic cytokines upon isopentenyl pyrophosphate (IPP) stimulation. In this study, we sought to compare IPP and Zoledronate, an up-regulator of IPP, effects on proliferation and cytokine secretion of Vγ9+ T cells from systemic sclerosis (SSc) patients and healthy controls (HCs). We also examined the effect of IPP-triggered peripheral blood mononuclear cells (PBMC) on fibroblast procolla- gen secretion. METHODS: PBMC from SSc patients and HCs were stimulated by increasing concentrations of Zoledronate, with or without IPP, and Vγ9+ T cell percentages were calculated using FACScan analysis. Subsequently, PBMC were cultured with IPP or toxic shock syndrome toxin-1 (TSST-1), and contents of the anti-fibrotic cytokines tumour necrosis factor (TNF)-α and interferon (IFN)-γ were measured by ELISA kits. Finally, supernatants of IPP-triggered Vγ9+ T cells from SSc patients were added to fibroblast cultures, and relative intensities of procollagen α1 chains were determined by densinometry. RESULTS: Higher concentrations of Zoledronate were required for maximal proliferation of Vγ9+ T cells in 9 SSc patients compared to 9 HCs, irrespective of exogenous IPP. When compared to stimulation by TSST-1, a non-Vγ9+ selective reagent, secretion of the anti-fibrotic cytokines TNF-α and IFN-γ in response to IPP was relatively diminished in SSc but not in HCs. Reduction of procollagen secretion by fibroblasts cultured with supernatants of IPP-stimulated PBMC was observed only in some SSc patients. CONCLUSIONS: Activated Vγ9+ T cells could act as anti-fibrotic mediators in SSc, although decreased responsiveness to IPP may play a role in the pathological fibrosis of this disease.


Assuntos
Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Escleroderma Sistêmico/imunologia , Subpopulações de Linfócitos T/imunologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Difosfonatos/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibrose , Hemiterpenos/farmacologia , Humanos , Imidazóis/farmacologia , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Fenótipo , Pró-Colágeno/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido Zoledrônico
2.
Methods Mol Biol ; 1149: 135-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818903

RESUMO

Pseudomonas aeruginosa secretes into its environment at least seven extracellular proteases: pseudolysin (LasB protease; elastase), aeruginolysin (alkaline proteinase), staphylolysin (staphylolytic endopeptidase; LasA protease), lysyl endopeptidase (protease IV; PrpL), PASP (P. aeruginosa small protease), LepA (Large ExoProtease A), and an aminopeptidase. Their action on host proteins, both individually and synergistically, plays important roles in pathogenesis of P. aeruginosa infections. Methods to measure/detect their activities are fundamental for understanding their physiological functions, roles in pathogenesis, mechanisms of action, regulation, and secretion. Most assays for determination/detection of proteolytic activity employ modified/non-modified casein or gelatin as substrates. In the quantitative assay, fragments generated from azocasein are separated from undigested substrate by trichloroacetic acid precipitation and their absorbance is measured. In non-quantitative assays, proteolytic activity is detected as clearing zones around bacterial growth or samples of culture supernatants on casein containing solid media formed due to local casein degradation. In zymography, individual proteases are detected as clear bands in gelatin/casein containing gels after SDS-PAGE separation, renaturation and protein staining. The elastinolytic capacity of P. aeruginosa is reflected by clearing zones on nutrient agar plates containing insoluble elastin instead of casein. Mueller-Hinton agar plates on which S. aureus cells are grown as a lawn are used to assess the susceptibility of S. aureus isolates to staphylolysin. A clear zone around a staphylolysin-containing sample indicates inhibition of S. aureus growth. Methods for measuring the activity of individual proteases are based on their cleavage specificity. These include assays of elastinolytic activity of pseudolysin and/or staphylolysin using elastin-Congo red as a substrate, a method for determination of staphylolytic activity in which the rate of S. aureus cell lysis is determined spectrophotometrically, and methods for determination of peptidase activity of pseudolysin, staphylolysin, lysyl endopeptidase, and the aminopeptidase. The latter methods employ chromogenic or fluorogenic peptide derivatives comprising a short amino acid sequence matching the preferred cleavage site of the protease as substrates. As only one peptide bond is cleaved in each substrate, these assays permit kinetic studies.


Assuntos
Elastina/metabolismo , Ensaios Enzimáticos/métodos , Peptídeo Hidrolases/metabolismo , Proteólise , Pseudomonas aeruginosa/enzimologia , Ágar , Sequência de Aminoácidos , Caseínas/metabolismo , Vermelho Congo/metabolismo , Fluorometria , Gelatina/metabolismo , Hidrólise , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Espectrofotometria
3.
Biochem J ; 457(1): 137-49, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24117177

RESUMO

PCPE-1 (procollagen C-proteinase enhancer-1) is an extracellular matrix glycoprotein that can stimulate procollagen processing by procollagen C-proteinases such as BMP-1 (bone morphogenetic protein 1). PCPE-1 interacts with several proteins in addition to procollagens and BMP-1, suggesting that it could be involved in biological processes other than collagen maturation. We thus searched for additional partners of PCPE-1 in the extracellular matrix, which could provide new insights into its biological roles. We identified 17 new partners of PCPE-1 by SPR (surface plasmon resonance) imaging. PCPE-1 forms a transient complex with the ß-amyloid peptide, whereas it forms high or very high affinity complexes with laminin-111 (KD=58.8 pM), collagen VI (KD=9.5 nM), TSP-1 (thrombospondin-1) (KD1=19.9 pM, KD2=14.5 nM), collagen IV (KD=49.4 nM) and endostatin, a fragment of collagen XVIII (KD1=0.30 nM, KD2=1.1 nM). Endostatin binds to the NTR (netrin-like) domain of PCPE-1 and decreases the degree of superstimulation of PCPE-1 enhancing activity by heparin. The analysis of the PCPE-1 interaction network based on Gene Ontology terms suggests that, besides its role in collagen deposition, PCPE-1 might be involved in tumour growth, neurodegenerative diseases and angiogenesis. In vitro assays have indeed shown that the CUB1CUB2 (where CUB is complement protein subcomponents C1r/C1s, urchin embryonic growth factor and BMP-1) fragment of PCPE-1 inhibits angiogenesis.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Mapas de Interação de Proteínas , Cálcio/farmacologia , Endostatinas/metabolismo , Proteínas da Matriz Extracelular/química , Ontologia Genética , Glicoproteínas/química , Células HEK293 , Heparina/metabolismo , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Neovascularização Fisiológica , Ligação Proteica/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
4.
Biochem J ; 433(2): 371-81, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20979576

RESUMO

The predominant form of type V collagen is the [α1(V)]2α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-ß1 (transforming growth factor ß1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.


Assuntos
Colágeno Tipo V/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Células HEK293 , Homeostase , Humanos , Ligação Proteica
5.
J Biol Chem ; 285(21): 15950-9, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20207734

RESUMO

The netrin-like (NTR) domain is a feature of several extracellular proteins, most notably the N-terminal domain of tissue inhibitors of metalloproteinases (TIMPs), where it functions as a strong inhibitor of matrix metalloproteinases and some other members of the metzincin superfamily. The presence of a C-terminal NTR domain in procollagen C-proteinase enhancers (PCPEs), proteins that stimulate the activity of astacin-like tolloid proteinases, raises the possibility that this might also have inhibitory activity. Here we show that both long and short forms of the PCPE-1 NTR domain, the latter beginning at the N-terminal cysteine known to be critical for TIMP activity, show no inhibition, at micromolar concentrations, of several members of the metzincin superfamily, including matrix metalloproteinase-2, bone morphogenetic protein-1 (a tolloid proteinase), and different ADAMTS (a disintegrin and a metalloproteinase with thrombospondin motifs) proteinases from the adamalysin family. In contrast, we report that the NTR domain within PCPE-1 leads to superstimulation of bone morphogenetic protein-1 activity in the presence of heparin and heparan sulfate. These observations point to a new mechanism whereby binding to cell surface-associated or extracellular heparin-like sulfated glycosaminoglycans might provide a means to accelerate procollagen processing in specific cellular and extracellular microenvironments.


Assuntos
Proteínas ADAM/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Linhagem Celular , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Pró-Colágeno/química , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Estrutura Terciária de Proteína , Inibidores Teciduais de Metaloproteinases/química , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Metaloproteases Semelhantes a Toloide/química , Metaloproteases Semelhantes a Toloide/genética
6.
J Biol Chem ; 279(29): 30060-5, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15138266

RESUMO

Tumor necrosis factor-alpha (TNF-alpha) inhibits osteoblast function in vitro by inhibiting collagen deposition. Studies generally support that TNF-alpha does not inhibit collagen biosynthesis by osteoblasts but that collagen deposition is in some way diminished. The study investigated TNF-alpha regulation of biosynthetic enzymes and proteins crucial for posttranslational extracellular collagen maturation in osteoblasts including procollagen C-proteinases, procollagen C-proteinase enhancer, and lysyl oxidase. The working hypothesis is that such regulation could inhibit collagen deposition by osteoblasts. We report that in phenotypically normal MC3T3-E1 osteoblasts, TNF-alpha decreases collagen deposition without decreasing collagen mRNA levels or procollagen protein synthesis. Analyses of the cell layers revealed that TNF-alpha diminished the levels of mature collagen cross-links, pyridinoline and deoxypyridinoline. Further analyses revealed that the mRNA expression for lysyl oxidase, the determining enzyme required for collagen cross-linking, is down-regulated by TNF-alpha in a concentration- and time-dependent manner by up to 50%. The decrease was accompanied by a significant reduction of lysyl oxidase protein levels and enzyme activity. By contrast, Northern and Western blotting studies revealed that procollagen C-proteinases bone morphogenic protein-1 and mammalians Tolloid and procollagen C-proteinase enhancer were expressed in MC3T3-E1 cells and not down-regulated. The data together demonstrate that TNF-alpha does not inhibit collagen synthesis but does inhibit the expression and activity of lysyl oxidase in osteoblasts, thereby contributing to perturbed collagen cross-linking and accumulation. These studies identify a novel mechanism in which proinflammatory cytokine modulation of an extracellular biosynthetic enzyme plays a determining role in the control of collagen accumulation by osteoblasts.


Assuntos
Colágeno/metabolismo , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aminoácidos/farmacologia , Animais , Northern Blotting , Western Blotting , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Inflamação , Camundongos , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Fatores de Tempo
7.
Anal Biochem ; 328(2): 225-32, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15113701

RESUMO

Pseudomonas aeruginosa LasA protease is a secreted metalloendopeptidase that can lyse Staphylococcus aureus cells by cleaving the pentaglycine bridges of their peptidoglycan. It can also degrade elastin and stimulate shedding of cell-surface proteoglycans, activities implicated in pathogenesis of P. aeruginosa infections. The activity of LasA protease can be assayed spectrophotometrically by following the reduction in turbidity of S. aureus cell suspensions. This assay, however, does not permit kinetic studies and its reproducibility is poor. Here we describe a two-stage enzymatic reaction for the continuous measurement of LasA protease activity using a defined substrate, succinyl-Gly-Gly-Phe-4-nitroanilide, supplemented with Streptomyces griseus aminopeptidase. Cleavage of the Gly-Phe bond by LasA protease is followed by hydrolysis of the product Phe-4-nitroanilide by the aminopeptidase and the rate of release of the chromophore (4-nitroaniline) is measured spectrophotometrically using a 96-well microplate reader. Activity of nanogram amounts of LasA protease could be determined within a few minutes. Furthermore, this assay permitted the determination of Km and kcat values for LasA protease, which were 0.46 mM and 11.8s(-1), respectively. Pseudomonas elastase was also active in the assay. However, it was less effective than LasA protease and its activity was inhibited by phosphoramidon. The assay is highly sensitive and reproducible, providing a convenient tool for further studies of LasA protease function(s) and mechanism of action.


Assuntos
Endotoxinas/análise , Espectrofotometria/métodos , Compostos de Anilina/análise , Compostos de Anilina/química , Proteínas de Bactérias/metabolismo , Cromatografia em Camada Fina , Glicopeptídeos , Hidrólise , Cinética , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Elastase Pancreática/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA