Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; : 167471, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154793

RESUMO

Despite numerous molecular targeted therapies tested in glioblastoma (GBM), no significant progress in patient survival has been achieved in the last 20 years in the overall population of GBM patients except with TTfield setup associated with the standard of care chemoradiotherapy. Therapy resistance is associated with target expression heterogeneity and plasticity between tumors and in tumor niches. We focused on α5 integrin implicated in aggressive GBM in preclinical and clinical samples. To address the characteristics of α5 integrin heterogeneity we started with patient data indicating that elevated levels of its mRNA are related to hypoxia pathways. We turned on glioma stem cells which are considered at the apex of tumor formation and recurrence but also as they localize in hypoxic niches. We demonstrated that α5 integrin expression is stem cell line dependent and is modulated positively by hypoxia in vitro. Importantly, heterogeneity of expression is conserved in in vivo stem cell-derived mice xenografts. In hypoxic niches, HIF-2α is preferentially implicated in α5 integrin expression which confers migratory capacity to GBM stem cells. Hence combining HIF-2α and α5 integrin inhibitors resulted in proliferation and migration impairment of α5 integrin expressing cells. Stabilization of HIF-2α is however not sufficient to control integrin α5 expression. Our results show that AHR (aryl hydrocarbon receptor) expression is inversely related to HIF-2α and α5 integrin expressions suggesting a functional competition between the two transcription factors. Collectively, data confirm the high heterogeneity of a GBM therapeutic target, its induction in hypoxic niches by HIF-2α and suggest a new way to attack molecularly defined GBM stem cells.

2.
J Mol Cell Cardiol Plus ; 8: 100069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38933087

RESUMO

Heart failure remains one of the largest clinical burdens globally, with little to no improvement in the development of disease-eradicating therapeutics. Integrin targeting has been used in the treatment of ocular disease and cancer, but little is known about its utility in the treatment of heart failure. Here we sought to determine whether the second generation orally available, αvß3-specific RGD-mimetic, 29P , was cardioprotective. Male mice were subjected to transverse aortic constriction (TAC) and treated with 50 µg/kg 29P or volume-matched saline as Vehicle control. At 3 weeks post-TAC, echocardiography showed that 29P treatment significantly restored cardiac function and structure indicating the protective effect of 29P treatment in this model of heart failure. Importantly, 29P treatment improved cardiac function giving improved fractional shortening, ejection fraction, heart weight and lung weight to tibia length fractions, together with partial restoration of Ace and Mme levels, as markers of the TAC insult. At a tissue level, 29P reduced cardiomyocyte hypertrophy and interstitial fibrosis, both of which are major clinical features of heart failure. RNA sequencing identified that, mechanistically, this occurred with concomitant alterations to genes involved molecular pathways associated with these processes such as metabolism, hypertrophy and basement membrane formation. Overall, targeting αvß3 with 29P provides a novel strategy to attenuate pressure-overload induced cardiac hypertrophy and fibrosis, providing a possible new approach to heart failure treatment.

3.
Commun Chem ; 7(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514757

RESUMO

Despite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids. S-EVs were obtained from cancer cell lines known to express, at a different level, the αvß6 integrin receptor, a well-established hallmark of numerous epithelial cancer types. The resulting biosensor turned out to recognize αvß6-containing S-EVs down to a limit of 0.7*103 S-EVs/mL with a linear range up to 105 S-EVs /mL, and a relative standard deviation of 11%, thus it may represent a novel opportunity for αvß6 expressing cancers detection.

4.
J Chem Inf Model ; 63(20): 6302-6315, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37788340

RESUMO

Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.


Assuntos
Integrinas , Oligopeptídeos , Linhagem Celular Tumoral , Oligopeptídeos/química , Peptídeos/química , Neoplasias Pancreáticas
5.
J Biol Chem ; 299(9): 105119, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527778

RESUMO

Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5ß1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5ß1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Integrina alfa5beta1 , Receptores Purinérgicos P2Y2 , Serratia , Toxinas Biológicas , Animais , Cricetinae , Trifosfato de Adenosina/metabolismo , Autofagia/efeitos dos fármacos , Células CHO , Cricetulus , Exocitose/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Serratia/química , Serratia/efeitos dos fármacos , Serratia/fisiologia , Toxinas Biológicas/farmacologia , Humanos
6.
Sci Rep ; 12(1): 8356, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589936

RESUMO

Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.


Assuntos
Dependovirus , Transportadores de Ânions Orgânicos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Proteínas Mitocondriais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transdução Genética
7.
Adv Sci (Weinh) ; 9(16): e2104979, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398994

RESUMO

Astrocytes have crucial functions in the central nervous system (CNS) and are major players in many CNS diseases. Research on astrocyte-centered diseases requires efficient and well-characterized gene transfer vectors. Vectors derived from the Adeno-associated virus serotype 9 (AAV9) target astrocytes in the brains of rodents and nonhuman primates. A recombinant (r) synthetic peptide-displaying AAV9 variant, rAAV9P1, that efficiently and selectively transduces cultured human astrocytes, has been described previously. Here, it is shown that rAAV9P1 retains astrocyte-targeting properties upon intravenous injection in mice. Detailed analysis of putative receptors on human astrocytes shows that rAAV9P1 utilizes integrin subunits αv, ß8, and either ß3 or ß5 as well as the AAV receptor AAVR. This receptor pattern is distinct from that of vectors derived from wildtype AAV2 or AAV9. Furthermore, a CRISPR/Cas9 genome-wide knockout screening revealed the involvement of several astrocyte-associated intracellular signaling pathways in the transduction of human astrocytes by rAAV9P1. This study delineates the unique receptor and intracellular pathway signatures utilized by rAAV9P1 for targeting human astrocytes. These results enhance the understanding of the transduction biology of synthetic rAAV vectors for astrocytes and can promote the development of advanced astrocyte-selective gene delivery vehicles for research and clinical applications.


Assuntos
Astrócitos , Vetores Genéticos , Animais , Astrócitos/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Camundongos , Transdução Genética
8.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053532

RESUMO

Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5ß1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5ß1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5ß1 integrin.

9.
J Med Chem ; 64(10): 6972-6984, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961417

RESUMO

Over recent years, αvß6 and αvß8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvß6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvß8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvß6/αvß8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.


Assuntos
Antígenos de Neoplasias/química , Herpesvirus Humano 1/fisiologia , Integrinas/química , Ligantes , Oligopeptídeos/química , Peptídeos Cíclicos/química , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Integrinas/metabolismo , Simulação de Acoplamento Molecular , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Ligação Proteica , Internalização do Vírus/efeitos dos fármacos
10.
Cancers (Basel) ; 13(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916607

RESUMO

Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.

11.
Biomaterials ; 271: 120754, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33756215

RESUMO

High levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery. Therefore, we conjugated Fc to five synthetic, Arg-Gly-Asp (RGD)-based integrin binding ligands to enable targeting of the cell adhesion and signaling receptor integrin subtypes αvß3, α5ß1, or αvß6, which are overexpressed in various, distinct tumors. We designed and synthesized a library of integrin-ligand-ferrocene (ILF) derivatives and showed that ILF conjugates maintained the high integrin affinity and selectivity of their parent ligands. A thorough biological characterization allowed us to identify the two most promising ligands, an αvß3 (L2b) and an αvß6 (L3b) targeting ILF, which displayed selective integrin-dependent cell uptake and pronounced ferrocene-mediated anti-tumor effects in vitro, along with increased ROS production and DNA damage. Hence, ILFs are promising candidates for the selective, tumor-targeted delivery of ferrocene to maximize its anti-cancer efficacy and minimize systemic toxicity, thereby improving the therapeutic window of ferrocene compared to currently used non-selective anti-cancer drugs.


Assuntos
Integrinas , Neoplasias , Humanos , Integrina alfa5beta1 , Integrina alfaVbeta3 , Ligantes , Metalocenos , Neoplasias/tratamento farmacológico
12.
Biophys Rep (N Y) ; 1(2): 100021, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36425460

RESUMO

Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.

13.
Front Bioeng Biotechnol ; 8: 577656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015026

RESUMO

Intestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like ß-lactam antibiotics. Here, we verify the applicability of 3D organoids for in vitro investigation of intestinal biochemical processes related to transport and metabolism of nutrients and drugs. Establishing a variety of methodologies including illustration of transporter-mediated nutrient and drug uptake and metabolomics approaches, we highlight intestinal organoids as robust and reliable tool in this field of research. Currently used in vitro models to study intestinal nutrient absorption, drug transport and enterocyte metabolism, such as Caco-2 cells or rodent explant models are of limited value due to their cancer and non-human origin, respectively. Particularly species differences result in poorly correlative data and findings obtained in these models cannot be extrapolated reliably to humans, as indicated by high failure rates in drug development pipelines. In contrast, human intestinal organoids represent a superior model of the intestinal epithelium and might help to implement the 3Rs (Reduction, Refinement and Replacement) principle in basic science as well as the preclinical and regulatory setup.

14.
Sci Rep ; 10(1): 5795, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242141

RESUMO

Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of α5ß1 integrin, differentially shift the conformational equilibrium of α5ß1 integrin towards the active state, in line with the extent of ß1 integrin activation from immunostaining. Unlike TUDC, 24-nor-ursodeoxycholic acid (norUDCA)-induced ß1 integrin activation triggered only transient activation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase and, consequently, only transient insertion of the bile acid transporter Bsep into the canalicular membrane, and did not involve activation of epidermal growth factor receptor. These results provide evidence that TUDC and norUDCA exert a functional selectivity at α5ß1 integrin and may provide a rationale for differential therapeutic use of UDCA and norUDCA.


Assuntos
Colagogos e Coleréticos/farmacologia , Integrina alfa5beta1/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Ursodesoxicólico/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sítios de Ligação , Colagogos e Coleréticos/química , Receptores ErbB/metabolismo , Integrina alfa5beta1/química , Fígado/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Ratos Wistar , Ácido Tauroquenodesoxicólico/química , Ácido Ursodesoxicólico/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Nano Lett ; 20(2): 1183-1191, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31908168

RESUMO

Cancer cell-matrix interactions have been shown to enhance cancer cell survival via the activation of pro-survival signaling pathways. These pathways are initiated at the site of interaction, i.e., integrins, and thus, their inhibition has been the target of therapeutic strategies. Individual roles for fibronectin-binding integrin subtypes αvß3 and α5ß1 have been shown for various cellular processes; however, a systematic comparison of their function in adhesion-dependent chemoresistance is lacking. Here, we utilize integrin subtype-specific peptidomimetics for αvß3 and α5ß1, both as blocking agents on fibronectin-coated surfaces and as surface-immobilized adhesion sites, in order to parse out their role in breast cancer cell survival. Block copolymer micelle nanolithography is utilized to immobilize peptidomimetics onto highly ordered gold nanoparticle arrays with biologically relevant interparticle spacings (35, 50, or 70 nm), thereby providing a platform for ascertaining the dependence of ligand spacing in chemoprotection. We show that several cellular properties-morphology, focal adhesion formation, and migration-are intricately linked to both the integrin subtype and their nanospacing. Importantly, we show that chemotherapeutic drug sensitivity is highly dependent on both parameters, with smaller ligand spacing generally hindering survival. Furthermore, we identify ligand type-specific patterns of drug sensitivity, with enhanced chemosurvival when cells engage αvß3 vs α5ß1 on fibronectin; however, this is heavily reliant on nanoscale spacing, as the opposite is observed when ligands are spaced at 70 nm. These data imply that even nanoscale alterations in extracellular matrix properties have profound effects on cancer cell survival and can thus inform future therapies and drug testing platforms.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Adesão Celular/genética , Integrina alfa5beta1/genética , Integrina alfaVbeta3/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fibronectinas/química , Fibronectinas/genética , Ouro/química , Humanos , Integrina alfa5beta1/química , Integrina alfaVbeta3/química , Ligantes , Nanopartículas Metálicas/química , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
EJNMMI Res ; 9(1): 75, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31410585

RESUMO

BACKGROUND: The development and clinical translation of [68Ga] Pentixafor has substantially promoted the relevance of non-invasive PET imaging of CXCR4 expression in a broad spectrum of diseases, including cancer and inflammation. Its pronounced selectivity for the human receptor (hCXCR4), however, precludes the use of [68Ga] Pentixafor for imaging receptor expression and dynamics in CXCR4-related diseases in endogenous mouse models. To overcome this restriction, [125I]CPCR4.3, a structurally related pentapeptide ligand, has been evaluated as a preclinical tool for efficient in vitro and in vivo targeting of hCXCR4 and mCXCR4. RESULTS: Compared to the reference [68Ga] Pentixafor, [125I]CPCR4.3 showed 2.4- to 11-fold increased specific binding to human cancer cell lines with different hCXCR4 expression levels (Jurkat, Daudi, HT-29, SH-5YSY, MCF-7, LNCaP) as well as strong and highly specific binding to mCXCR4 expressing cells (mCXCR4-transfected CHO cells, Eµ-myc 1080, 4 T1), which was not detectable for [68Ga]Pentixafor. This is the consequence of the equally high affinity of iodo-CPCR4 to hCXCR4 and mCXCR4 (IC50 = 5.4 ± 1.5 and 4.9 ± 1.7 nM, respectively) as opposed to [natGa] Pentixafor (hCXCR4: 42.4 ± 11.6 nM, mCXCR4: > 1000 nM). Additionally, [125I]CPCR4.3 showed enhanced tracer internalization (factor of 1.5-2 compared to the reference). In vivo biodistribution studies in immunocompetent Black Six and immunocompromised CD-1 nude mice showed predominant hepatobiliary excretion of [125I]CPCR4.3 (logP = 0.51), leading to high activity levels in liver and intestines. However, [125I]CPCR4.3 also showed high and specific accumulation in organs with endogenous mCXCR4 expression (spleen, lung, adrenals), even at low receptor expression levels. CONCLUSIONS: Due to its excellent hCXCR4 and mCXCR4 targeting efficiency, both in vitro and in vivo, [125I]CPCR4.3 represents a sensitive and reliable tool for the species-independent quantification of CXCR4 expression. Its suboptimal clearance properties will certainly restrict its use for in vivo imaging applications using 123I (for SPECT) or 124I (for PET), but due to its high and specific accumulation in mCXCR4 expressing tissues, [125I]CPCR4.3 holds promise as a powerful preclinical tool for the investigation and quantification of CXCR4 involvement and kinetics in various murine disease models via, e.g., biodistribution and autoradiography studies.

17.
J Med Chem ; 62(4): 2024-2037, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30657681

RESUMO

Integrins play important roles in physiological and pathophysiological processes. Among the RGD-recognizing integrin subtypes, the αvß8 receptor is emerging as an attractive target because of its involvement in various illnesses, such as autoimmune diseases, viral infections, and cancer. However, its functions have, so far, not been investigated in living subjects mainly because of the lack of a selective αvß8 ligand. Here, we report the design and potential medical applications of a cyclic octapeptide as the first highly selective small-molecule ligand for αvß8. Remarkably, this compound displays low nanomolar αvß8 binding affinity and a strong discriminating power of at least 2 orders of magnitude versus other RGD-recognizing integrins. Peptide functionalization with fluorescent or radioactive labels enables the selective imaging of αvß8-positive cells and tissues. This new probe will pave the way for detailed characterization of the distinct (patho)physiological role of this relatively unexplored integrin, providing a basis to fully exploit the potential of αvß8 as a target for molecular diagnostics and personalized therapy regimens.


Assuntos
Integrinas/metabolismo , Peptídeos Cíclicos/farmacologia , Compostos de Boro/metabolismo , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Radioisótopos de Gálio , Humanos , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/metabolismo , Estudo de Prova de Conceito , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacologia
18.
Bioconjug Chem ; 29(11): 3856-3865, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30380298

RESUMO

Cisplatin occupies a crucial role in the treatment of various malignant tumors. However, its efficacy and applicability are heavily restricted by severe systemic toxicities and drug resistance. Our study exploits the active targeting of supramolecular metallacages to enhance the activity of cisplatin in cancer cells while reducing its toxicity. Thus, Pd2L4 cages (L = ligand) have been conjugated to four integrin ligands with different binding affinity and selectivity. Cage formation and encapsulation of cisplatin was proven by NMR spectroscopy. Upon encapsulation, cisplatin showed increased cytotoxicity in vitro, in melanoma A375 cells overexpressing αvß3 integrins. Moreover, ex vivo studies in tissue slices indicated reduced toxicity toward healthy liver and kidney tissues for cage-encapsulated cisplatin. Analysis of metal content by ICP-MS demonstrated that the encapsulated drug is less accumulated in these organs compared to the "free" cisplatin.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Portadores de Fármacos/metabolismo , Integrina alfaVbeta3/metabolismo , Melanoma/tratamento farmacológico , Estruturas Metalorgânicas/metabolismo , Paládio/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Masculino , Melanoma/metabolismo , Estruturas Metalorgânicas/química , Paládio/química , Ratos Wistar
19.
Angew Chem Int Ed Engl ; 57(44): 14414-14438, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30144240

RESUMO

For decades, the development of peptides as potential drugs was aimed solely at peptides with the highest affinity, receptor selectivity, or stability against enzymatic degradation. However, optimization of their oral availability is highly desirable to establish orally active peptides as potential drug candidates for everyday use. A twofold optimization process is necessary to produce orally active peptides: 1) optimization of the affinity and selectivity and 2) optimization of the oral availability. These two steps must be performed sequentially for the rational design of orally active peptides. Nevertheless, additional knowledge is required to understand which structural changes increase oral availability, followed by incorporation of these elements into a peptide without changing its other biological properties. Considerable efforts have been made to understand the influence of these modifications on oral availability. One approach is to improve the oral availability of a peptide that has been previously optimized for biological activity, as described in (1) above. The second approach is to first identify an intestinally permeable, metabolically stable peptide scaffold and then introduce the functional groups necessary for the desired biological function. Previous approaches to achieving peptide oral availability have been claimed to have general applicability but, thus far, most of these solutions have not been successful in other cases. This Review discusses diverse chemical modifications, model peptides optimized for bioavailability, and orally active peptides to summarize the state of the research on the oral activity of peptides. We explain why no simple and straightforward strategy (i.e. a "magic bullet") exists for the design of an orally active peptide with a druglike biological function.


Assuntos
Peptídeos/farmacologia , Administração Oral , Disponibilidade Biológica , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Permeabilidade
20.
Nano Lett ; 18(9): 5899-5904, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30088769

RESUMO

Adoptive cell therapies are showing very promising results in the fight against cancer. However, these therapies are expensive and technically challenging in part due to the need of a large number of specific T cells, which must be activated and expanded in vitro. Here we describe a method to activate primary human T cells using a combination of nanostructured surfaces functionalized with the stimulating anti-CD3 antibody and the peptidic sequence arginine-glycine-aspartic acid, as well as costimulatory agents (anti-CD28 antibody and a cocktail of phorbol 12-myristate 13-acetate, ionomycin, and protein transport inhibitors). Thus, we propose a method that combines nanotechnology with cell biology procedures to efficiently produce T cells in the laboratory, challenging the current state-of-the-art expansion methodologies.


Assuntos
Materiais Revestidos Biocompatíveis/química , Ativação Linfocitária , Nanoestruturas/química , Linfócitos T/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Adesão Celular , Células Cultivadas , Ouro/química , Humanos , Imunoterapia Adotiva , Ionomicina/química , Ionomicina/imunologia , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Oligopeptídeos/imunologia , Propriedades de Superfície , Linfócitos T/citologia , Acetato de Tetradecanoilforbol/química , Acetato de Tetradecanoilforbol/imunologia , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA