Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308663

RESUMO

Cadmium (Cd) exposure causes an oxidative challenge and inhibits cell cycle progression, ultimately impacting plant growth. Stress-induced effects on the cell cycle are often a consequence of activation of the DNA damage response (DDR). The main aim of this study was to investigate the role of the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) and three downstream cyclin-dependent kinase inhibitors of the SIAMESE-RELATED (SMR) family in the Cd-induced DDR and oxidative challenge in leaves of Arabidopsis thaliana. Effects of Cd on plant growth, cell cycle regulation and the expression of DDR genes were highly similar between the wildtype and smr4/5/7 mutant. In contrast, sog1-7 mutant leaves displayed a much lower Cd sensitivity within the experimental time-frame and significantly less pronounced upregulations of DDR-related genes, indicating the involvement of SOG1 in the Cd-induced DDR. Cadmium-induced responses related to the oxidative challenge were disturbed in the sog1-7 mutant, as indicated by delayed Cd-induced increases of hydrogen peroxide and glutathione concentrations and lower upregulations of oxidative stress-related genes. In conclusion, our results attribute a novel role to SOG1 in regulating the oxidative stress response and connect oxidative stress to the DDR in Cd-exposed plants.

2.
BMC Plant Biol ; 19(1): 271, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226937

RESUMO

BACKGROUND: The heavy metal cadmium (Cd) accumulates in the environment due to anthropogenic influences. It is unessential and harmful to all life forms. The plant cell wall forms a physical barrier against environmental stress and changes in the cell wall structure have been observed upon Cd exposure. In the current study, changes in the cell wall composition and structure of Medicago sativa stems were investigated after long-term exposure to Cd. Liquid chromatography coupled to mass spectrometry (LC-MS) for quantitative protein analysis was complemented with targeted gene expression analysis and combined with analyses of the cell wall composition. RESULTS: Several proteins determining for the cell wall structure changed in abundance. Structural changes mainly appeared in the composition of pectic polysaccharides and data indicate an increased presence of xylogalacturonan in response to Cd. Although a higher abundance and enzymatic activity of pectin methylesterase was detected, the total pectin methylation was not affected. CONCLUSIONS: An increased abundance of xylogalacturonan might hinder Cd binding in the cell wall due to the methylation of its galacturonic acid backbone. Probably, the exclusion of Cd from the cell wall and apoplast limits the entry of the heavy metal into the symplast and is an important factor during tolerance acquisition.


Assuntos
Cádmio/toxicidade , Parede Celular/química , Medicago sativa/efeitos dos fármacos , Pectinas/química , Poluentes do Solo/toxicidade , Cromatografia Líquida , Perfilação da Expressão Gênica , Ácidos Hexurônicos/metabolismo , Espectrometria de Massas , Monossacarídeos/análise , Proteínas de Plantas/metabolismo , Caules de Planta/química , Polissacarídeos/química , Proteoma
3.
Front Plant Sci ; 9: 391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29611547

RESUMO

[This corrects the article on p. 1867 in vol. 8, PMID: 29163592.].

4.
Front Plant Sci ; 8: 1867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163592

RESUMO

Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.

5.
Front Plant Sci ; 7: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870052

RESUMO

The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.

6.
Plant Sci ; 239: 137-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26398798

RESUMO

Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 µM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed.


Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Etilenos/metabolismo , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Poluentes do Solo/toxicidade , Arabidopsis/metabolismo , Modelos Biológicos , Oxirredução , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transdução de Sinais
7.
Plant Physiol Biochem ; 83: 1-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049163

RESUMO

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSH's antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms.


Assuntos
Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Glutationa/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo
8.
Plant Physiol Biochem ; 63: 272-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314084

RESUMO

Lipoxygenases (LOXes, EC 1.13.11.12) are involved in growth, development and responses to stress. Earlier results suggested a role in stress generation, signalling and/or responses when Arabidopsis thaliana is exposed to cadmium (Cd), and expression of the cytosolic LOX1 was highly upregulated in the roots after Cd exposure. To investigate the involvement of LOX1 in early metal stress responses, three-week-old wild-type and lox1-1 mutant A. thaliana plants were acutely (24 h) exposed to realistic Cd concentrations (5 and 10 µM) and several oxidative stress and signalling related parameters were studied at transcriptional and biochemical levels. Transcription of several genes encoding ROS producing and scavenging enzymes failed to be induced up to wild-type levels after Cd exposure. Expression of 9-LOX enzymes was inhibited in lox1-1 mutant roots due to lack of functional LOX1 and downregulated LOX5 expression, and the lox1-1 mutation also interfered with the expression of genes involved in jasmonate biosynthesis. LOX1 and RBOHD may be involved in stress signalling from roots to shoots, as the induction of APX2 expression, which is dependent on RBOHD activity, was disrupted in lox1-1 while RBOHD failed to be upregulated. A different pattern of H(2)O(2) production and ascorbate and glutathione levels in lox1-1 mutants after Cd exposure may have indirectly influenced gene expression patterns. Although indirect effects of the lox1-1 mutation on gene expression complicate the determination of exact sensing - signalling - response pathways, the results presented here outline a more refined LOX1 functioning in Cd-induced stress responses that could be used in studies determining the exact involvement of LOX1 in these pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Cádmio/toxicidade , Lipoxigenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Lipoxigenase/genética , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
J Plant Physiol ; 168(4): 309-16, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20828869

RESUMO

The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis. In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.


Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/farmacologia , Cobre/farmacologia , Estresse Oxidativo/fisiologia , Plântula/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Modelos Biológicos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/enzimologia , Plântula/metabolismo , Transdução de Sinais , Estresse Fisiológico
10.
Biometals ; 23(5): 927-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20361350

RESUMO

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.


Assuntos
Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Poluentes Ambientais/toxicidade , Indução Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Metalotioneína/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , NADPH Oxidases/biossíntese , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA