Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 54: 102711, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813236

RESUMO

For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Técnicas de Transferência de Genes , Terapia Genética
2.
Methods Mol Biol ; 2407: 429-445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985679

RESUMO

First identified as a viral defense mechanism, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) has been transformed into a gene-editing tool. It now affords promise in the treatment and potential eradication of a range of divergent genetic, cancer, infectious, and degenerative diseases. Adapting CRISPR-Cas into a programmable endonuclease directed guide RNA (gRNA) has attracted international attention. It was recently awarded the 2020 Nobel Prize in Chemistry. The limitations of this technology have also been identified and work has been made in providing potential remedies. For treatment of the human immunodeficiency virus type one (HIV-1), in particular, a CRISPR-Cas9 approach was adapted to target then eliminate latent proviral DNA. To this end, we reviewed the promise and perils of CRISPR-Cas gene-editing strategies for HIV-1 elimination. Obstacles include precise delivery to reservoir tissue and cell sites of latent HIV-1 as well as assay sensitivity and specificity. The detection and consequent excision of common viral strain sequences and the avoidance of off-target activity will serve to facilitate a final goal of HIV-1 DNA elimination and accelerate testing in infected animals ultimately for use in man.


Assuntos
Infecções por HIV , HIV-1 , Sistemas CRISPR-Cas/genética , Edição de Genes , HIV-1/genética , RNA Guia de Cinetoplastídeos/genética , Latência Viral
3.
EBioMedicine ; 73: 103678, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34774454

RESUMO

BACKGROUND: A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery. METHODS: A library of guide RNAs (gRNAs) designed to disrupt five HIV-1 exons (tat1-2/rev1-2/gp41) was constructed. The gRNAs were derived from a conseensus sequence of the transcriptional regulator tat from 4004 HIV-1 strains. Efficacy was affirmed by gRNA cell entry through transfection, electroporation, or by lentivirus or lipid nanoparticle (LNP) delivery. Treated cells were evaluated for viral excision by monitoring HIV-1 DNA, RNA, protein, and progeny virus levels. FINDINGS: Virus was reduced in all transmitted founder strains by 82 and 94% after CRISPR TatDE transfection or lentivirus treatments, respectively. No recorded off-target cleavages were detected. Electroporation of TatDE ribonucleoprotein and delivery of LNP TatDE gRNA and spCas9 mRNA to latently infected cells resulted in up to 100% viral excision. Protection against HIV-1-challenge or induction of virus during latent infection, in primary or transformed CD4+ T cells or monocytes was achieved. We propose that multi-exon gRNA TatDE disruption delivered by LNPs enables translation for animal and human testing. INTERPRETATION: These results provide "proof of concept' for CRISPR gRNA treatments for HIV-1 elimination. The absence of full-length viral DNA by LNP delivery paired with undetectable off-target affirms the importance of payload delivery for effective viral gene editing. FUNDING: The work was supported by the University of Nebraska Foundation, including donations from the Carol Swarts, M.D. Emerging Neuroscience Research Laboratory, the Margaret R. Larson Professorship, and individual donor support from the Frances and Louie Blumkin Foundation and from Harriet Singer. The research received support from National Institutes of Health grants T32 NS105594, 5R01MH121402, 1R01Al158160, R01 DA054535, PO1 DA028555, R01 NS126089, R01 NS36126, PO1 MH64570, P30 MH062261, and 2R01 NS034239.


Assuntos
Sistemas CRISPR-Cas , Éxons , Edição de Genes , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Linhagem Celular , Sequência Conservada , Imunofluorescência , Marcação de Genes , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Genoma Viral , Humanos , Lipossomos , Macrófagos/metabolismo , Macrófagos/virologia , Nanopartículas , Provírus/genética , Interferência de RNA , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , RNA Guia de Sistemas CRISPR-Cas
4.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798897

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Assuntos
Doença de Alzheimer/patologia , Linfócitos T CD4-Positivos/patologia , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Transtornos Cognitivos/patologia , Transtornos Cognitivos/psicologia , Inflamação/genética , Camundongos , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
5.
Acta Biomater ; 136: 485-494, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601108

RESUMO

Carbon nanodots based on L-arginine (L-Arg) were developed for enhanced nitric oxide (NO) gas therapy for cancer. The L-Arg-based carbon nanodots (Arg-dots) produced high levels of NO in the tumor environment rich in endogenous H2O2. In vitro cell experiments revealed that the Arg-dots could kill tumor cells (including human breast cancer cell line MCF-7, female gastric cancer cell line BGC-823, male lung cancer cell line A549, and female leukemic cell line K562) but did not affect the activity of normal cells (human normal lung epithelial cell line BEAS-2B). The Arg-dots produced twice the amount of NO for an equivalent amount of L-Arg. Theoretical calculations showed that the carbonization structure of the Arg-dots promoted significantly more electrons toward the guanidinium groups of L-Arg and boosted the adsorption of H2O2 molecules. In vitro and in vivo investigations confirmed that the Arg-dots reduced the multidrug resistance (MDR) effect of the tumor cells (MCF-7/ADR cells) and produced a combined antitumor efficacy with traditional chemotherapeutic drugs (adriamycin [ADR]). The fluorescence property (quantum yield, 6.88%) allows the Arg-dots to be used as a suitable fluorescent probe for fluorescence imaging of tumor cells. The ultra-small size of the Arg-dots (diameter: ca. 2.5 nm) enables them not only to penetrate deep tumors and provide enhanced antitumor activity but also to be removed through kidney filtration and have a renal clearance property. STATEMENT OF SIGNIFICANCE: Nitric oxide (NO), which serves as a biological messenger, can be used in gas therapy for cancer. The development of a safe and efficient NO cancer therapy is, however, challenging because of the low NO release amount and poor tumor specificity of most NO donors. Many efforts have been made to overcome these drawbacks, but solving both these limitations through a single approach has been seldom achieved. In the present work, carbon nanodots (Arg-dots) from L-arginine were used for gas therapy of cancer. The Arg-dots produced NO in the H2O2-rich tumor environment. Theoretical calculations were consistent with the mechanism of enhanced NO release amount. The Arg-dots also reduced the multidrug resistance effect in cancer chemotherapy. In vivo and in vitro toxicity assessments confirmed that the Arg-dots have excellent biosafety.


Assuntos
Carbono , Óxido Nítrico , Linhagem Celular Tumoral , Doxorrubicina , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Peróxido de Hidrogênio , Masculino
6.
Retrovirology ; 18(1): 13, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090462

RESUMO

Humanized mice model human disease and as such are used commonly for research studies of infectious, degenerative and cancer disorders. Recent models also reflect hematopoiesis, natural immunity, neurobiology, and molecular pathways that influence disease pathobiology. A spectrum of immunodeficient mouse strains permit long-lived human progenitor cell engraftments. The presence of both innate and adaptive immunity enables high levels of human hematolymphoid reconstitution with cell susceptibility to a broad range of microbial infections. These mice also facilitate investigations of human pathobiology, natural disease processes and therapeutic efficacy in a broad spectrum of human disorders. However, a bridge between humans and mice requires a complete understanding of pathogen dose, co-morbidities, disease progression, environment, and genetics which can be mirrored in these mice. These must be considered for understanding of microbial susceptibility, prevention, and disease progression. With known common limitations for access to human tissues, evaluation of metabolic and physiological changes and limitations in large animal numbers, studies in mice prove important in planning human clinical trials. To these ends, this review serves to outline how humanized mice can be used in viral and pharmacologic research emphasizing both current and future studies of viral and neurodegenerative diseases. In all, humanized mouse provides cost-effective, high throughput studies of infection or degeneration in natural pathogen host cells, and the ability to test transmission and eradication of disease.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Camundongos SCID , Doenças Neurodegenerativas/imunologia , Animais , HIV-1/imunologia , Camundongos
7.
Theranostics ; 10(2): 630-656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903142

RESUMO

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention. Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission computed tomography (SPECT/CT) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging. Results: Nanoformulated RPV and BSNRs-RPV particles showed comparable physicochemical and cell biological properties. Drug-particle pharmacokinetics (PK) and biodistribution in lymphoid tissue macrophages proved equivalent, one with the other. Rapid particle uptake and tissue distribution were observed, without adverse reactions, in primary blood-derived and tissue macrophages. The latter was seen within the marginal zones of spleen. Conclusions: These data, taken together, support the use of 177LuBSNRs as theranostic probes as a rapid assessment tool for PK LA ARV measurements.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Lutécio/farmacocinética , Macrófagos/metabolismo , Nanopartículas/administração & dosagem , Radioisótopos/farmacocinética , Rilpivirina/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Compostos Radiofarmacêuticos/farmacocinética , Inibidores da Transcriptase Reversa/farmacocinética , Rilpivirina/farmacologia , Distribuição Tecidual
8.
J Neuroimmune Pharmacol ; 14(1): 44-51, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617749

RESUMO

Mixed lineage kinases (MLKs) are a group of serine-threonine kinases that evolved in part to respond to endogenous and exogenous insults that result in oxidative stress and pro-inflammatory responses from innate immune cells. Human immunodeficiency virus type 1 (HIV-1) thrives in these conditions and is associated with the development of associated neurocognitive disorders (HAND). As part of a drug discovery program to identify new therapeutic strategies for HAND, we created a library of broad spectrum MLK inhibitors with drug-like properties. Serendipitously, the lead compound, URMC-099 has proved useful not only in reversing damage to synaptic architecture in models of HAND, but also serves to restore autophagy as a protective response when given in concert with nanoformulated antiretroviral therapy (nanoART) in persistently infected macrophages. These findings are reviewed in the context of MLK3 biology and cellular signaling pathways relevant to new HIV-1 therapies. Graphical abstract.


Assuntos
Complexo AIDS Demência/virologia , HIV-1/efeitos dos fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Animais , HIV-1/fisiologia , Humanos , Macrófagos/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
9.
Theranostics ; 8(1): 256-276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290806

RESUMO

RATIONALE: Long-acting slow effective release antiretroviral therapy (LASER ART) was developed to improve patient regimen adherence, prevent new infections, and facilitate drug delivery to human immunodeficiency virus cell and tissue reservoirs. In an effort to facilitate LASER ART development, "multimodal imaging theranostic nanoprobes" were created. These allow combined bioimaging, drug pharmacokinetics and tissue biodistribution tests in animal models. METHODS: Europium (Eu3+)- doped cobalt ferrite (CF) dolutegravir (DTG)- loaded (EuCF-DTG) nanoparticles were synthesized then fully characterized based on their size, shape and stability. These were then used as platforms for nanoformulated drug biodistribution. RESULTS: Folic acid (FA) decoration of EuCF-DTG (FA-EuCF-DTG) nanoparticles facilitated macrophage targeting and sped drug entry across cell barriers. Macrophage uptake was higher for FA-EuCF-DTG than EuCF-DTG nanoparticles with relaxivities of r2 = 546 mM-1s-1 and r2 = 564 mM-1s-1 in saline, and r2 = 850 mM-1s-1 and r2 = 876 mM-1s-1 in cells, respectively. The values were ten or more times higher than what was observed for ultrasmall superparamagnetic iron oxide particles (r2 = 31.15 mM-1s-1 in saline) using identical iron concentrations. Drug particles were detected in macrophage Rab compartments by dual fluorescence labeling. Replicate particles elicited sustained antiretroviral responses. After parenteral injection of FA-EuCF-DTG and EuCF-DTG into rats and rhesus macaques, drug, iron and cobalt levels, measured by LC-MS/MS, magnetic resonance imaging, and ICP-MS were coordinate. CONCLUSION: We posit that these theranostic nanoprobes can assess LASER ART drug delivery and be used as part of a precision nanomedicine therapeutic strategy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanomedicina Teranóstica/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Európio/química , Európio/farmacocinética , Ácido Fólico/química , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Macaca mulatta , Macrófagos/metabolismo , Microscopia Confocal , Nanopartículas/química , Oxazinas , Piperazinas , Piridonas
10.
Acta Biomater ; 49: 507-520, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27916740

RESUMO

The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM-1s-1 and r2=419.52mM-1s-1 (in saline) and r2=736.57mM-1s-1 and r2=814.41mM-1s-1 (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM-1s-1 in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. STATEMENT OF SIGNIFICANCE: A novel europium (Eu3+) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve as a platform for designing improved drug delivery strategies to combat inflammatory and infectious diseases.


Assuntos
Cobalto/química , Európio/química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanopartículas/química , Dióxido de Silício/química , Animais , Endocitose , Ácido Fólico/química , Humanos , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Masculino , Microscopia de Força Atômica , Microscopia Confocal , Monócitos/citologia , Nanopartículas/toxicidade , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Distribuição Tecidual
11.
Colloids Surf B Biointerfaces ; 122: 175-183, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25033437

RESUMO

This work reports intercalation of a sparingly soluble antibiotic (ciprofloxacin) into layered nanostructure silicate, montmorillonite (MMT) and its reaction with bone derived polypeptide, gelatin that yields three-dimensional composite hydrogel. Drug intercalation results in changes in MMT layered space and drug loaded MMT and gelatin creates 3D morphology with biodegradable composite hydrogels. These changes can be correlated with electrostatic interactions between the drug, MMT and the gelatin polypeptides as confirmed by X-ray diffraction patterns, thermal, spectroscopic analyses, computational modeling and 3D morphology revealed by SEM and TEM analysis. No significant changes in structural and functional properties of drug was found after intercalation in MMT layers and composite hydrogels. In vitro drug release profiles showed controlled release up to 150h. The drug loaded composite hydrogels were tested on lung cancer cells (A549) by MTT assay. The results of in vitro cell migration and proliferation assay were promising as composite hydrogels induced wound healing progression. In vitro biodegradation was studied using proteolytic enzymes (lysozyme and protease K) at physiological conditions. This new approach of drug intercalation into the layered nanostructure silicate by ion-exchange may have significant applications in cost-effective wound dressing biomaterial with antimicrobial property.


Assuntos
Antibacterianos/administração & dosagem , Bandagens , Bentonita/administração & dosagem , Materiais Biocompatíveis , Ciprofloxacina/administração & dosagem , Sistemas de Liberação de Medicamentos , Gelatina/administração & dosagem , Hidrogéis , Ferimentos e Lesões/terapia , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Colloids Surf B Biointerfaces ; 112: 400-7, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24036475

RESUMO

Intercalation of 6-mercaptopurine (6-MP), an antineoplastic drug in interlayer gallery of Na(+)-clay (MMT) was further entrapped in poly (L-lactide) matrix to form microcomposite spheres (MPs) in order to reduce the cell toxicity and enhance in vitro release and pharmacokinetic proficiency. The drug-clay hybrid was fabricated via intercalation by ion-exchange method to form MPs from hybrid. In vitro drug release showed controlled pattern, fitted to kinetic models suggested controlled exchange and partial diffusion through swollen matrix of clay inter layered gallery. The in vitro efficacy of formulated composites drug was tested in Human neuroblastoma cell line (IMR32) by various cell cytotoxic and oxidative stress marker indices. In vivo pharmacokinetics suggested that the intensity of formulated drug level in plasma was within remedial borders as compared to free drug. These clay based composites therefore have great potential of becoming a new dosage form of 6-MP.


Assuntos
Silicatos de Alumínio/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Mercaptopurina/administração & dosagem , Mercaptopurina/farmacocinética , Poliésteres/química , Animais , Antineoplásicos/sangue , Bentonita/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Argila , Formas de Dosagem , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mercaptopurina/sangue , Microscopia Eletrônica de Varredura , Microesferas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Eur J Pharm Sci ; 47(1): 265-72, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22525435

RESUMO

This work evaluates intercalation of tamoxifen (Tmx) in interlayer gallery of Na(+)-MMT (Montmorillonite, MMT) (Tmx-MMT), which is further compounded with poly-(ε-caprolactone) (PCL) (Tmx-MMT/PCL, MPs), for oral chemotherapy of breast cancer. The X-ray diffraction patterns, thermal and spectroscopic analyses indicated the intercalation of Tmx into the MMT interlayer that stabilized in the longitudinal monolayer mode by electrostatic interaction. No significant change in structural and functional properties of Tmx was found in the MMT layers. In vitro study of drug release profiles showed controlled release pattern. The genotoxic effect of drug was in vitro evaluated in human lymphocyte cell culture by comet assay, and results indicated moderate reduction in DNA damage when pristine Tmx was intercalated with MMT and formulated in composites. The Tmx-MMT hybrid efficacy was also confirmed on HeLa and A549 cancer cells by in vitro cell viability assay. In vivo pharmacokinetics (PK) of formulated Tmx in rats was examined and the results showed that plasma Tmx levels were within therapeutic window as compared to pristine Tmx. Therefore, Tmx-MMT hybrid and microcomposite particles (MPs) can be of considerable value in chemotherapy of malignant neoplastic disease with reduced side effects. This study clearly indicated that MMT not only plays a role as a delivery matrix for drug, but also facilitates significant increase in the delivery proficiency.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bentonita/química , Portadores de Fármacos/química , Poliésteres/química , Animais , Antineoplásicos/farmacocinética , Bentonita/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Feminino , Células HeLa , Humanos , Linfócitos/efeitos dos fármacos , Poliésteres/administração & dosagem , Ratos , Ratos Wistar , Sódio/química , Tamoxifeno/administração & dosagem , Tamoxifeno/química , Tamoxifeno/farmacocinética , Difração de Raios X/métodos
14.
Eur J Pharm Biopharm ; 81(1): 91-101, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22269936

RESUMO

We report here the intercalation of 5-fluorouracil (5-FU), an anticancer drug in interlayer gallery of Na(+) clay (Montmorillonite, MMT), with the assistance of biopolymer (chitosan, CS). The X-ray diffraction patterns, thermal and spectroscopic analyses indicated the drug intercalation into the clay interlayer space in support of CS and stabilized in the longitudinal monolayer by electrostatic interaction. In vitro drug release showed controlled release pattern. The genotoxic effect of drug was in vitro evaluated in human lymphocyte cell culture by comet assay, and results indicated significant reduction in DNA damage when drug was intercalated with clay and formulated in composites. The results of in vitro cell viability assay in cancer cells pointed at decreased toxicity of drug when encapsulated in Na(+)-clay plates than the pristine drug. In vivo pharmacokinetics, biodistribution, hepatotoxicity markers, e.g., SGPT and SGOT, and liver/testicular histology in rats showed plasma/tissue drug levels were within therapeutic window as compared to pristine drug. Therefore, drug-clay hybrid and composites can be of considerable value in chemotherapy of cancer with reduced side effects.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Fluoruracila/administração & dosagem , Nanocompostos , Animais , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/toxicidade , Bentonita/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Preparações de Ação Retardada , Fluoruracila/farmacocinética , Fluoruracila/toxicidade , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Ratos , Ratos Wistar , Eletricidade Estática , Distribuição Tecidual , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA