Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14671, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038588

RESUMO

This descriptive case series retrospectively reviewed medical records from thirty-one previously healthy, war-fighting veterans who self-reported exposure to airborne hazards while serving in Iraq and Afghanistan between 2003 and the present. They all noted new-onset dyspnea, which began during deployment or as a military contractor. Twenty-one subjects underwent non-invasive pulmonary diagnostic testing, including maximum expiratory pressure (MEP) and impulse oscillometry (IOS). In addition, five soldiers received a lung biopsy; tissue results were compared to a previously published sample from a soldier in our Iraq Afghanistan War Lung Injury database and others in our database with similar exposures, including burn pits. We also reviewed civilian control samples (5) from the Stony Brook University database. Military personnel were referred to our International Center of Excellence in Deployment Health and Medical Geosciences, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell under the auspices of Northwell IRB: 17-0140-FIMR Feinstein Institution for Medical Research "Clinicopathologic characteristics of Iraq Afghanistan War Lung Injury." We retrospectively examined medical records, including exposure data, radiologic imaging, and non-invasive pulmonary function testing (MGC Diagnostic Platinum Elite Plethysmograph) using the American Thoracic Society (ATS) standard interpretation based on Morgan et al., and for a limited cohort, biopsy data. Lung tissue, when available, was examined for carbonaceous particles, polycyclic aromatic hydrocarbons (Raman spectroscopy), metals, titanium connected to iron (Brookhaven National Laboratory, National Synchrotron Light Source II, Beamline 5-ID), oxidized metals, combustion temperature, inflammatory cell accumulation and fibrosis, neutrophil extracellular traps, Sirius red, Prussian Blue, as well as polarizable crystals/particulate matter/dust. Among twenty-one previously healthy, deployable soldiers with non-invasive pulmonary diagnostic tests, post-deployment, all had severely decreased MEP values, averaging 42% predicted. These same patients concurrently demonstrated abnormal airways reactance (X5Hz) and peripheral/distal airways resistance (D5-D20%) via IOS, averaging - 1369% and 23% predicted, respectively. These tests support the concept of airways hyperresponsiveness and distal airways narrowing, respectively. Among the five soldiers biopsied, all had constrictive bronchiolitis. We detected the presence of polycyclic aromatic hydrocarbons (PAH)-which are products of incomplete combustion-in the lung tissue of all five warfighters. All also had detectable titanium and iron in the lungs. Metals were all oxidized, supporting the concept of inhaling burned metals. Combustion temperature was consistent with that of burned petrol rather than higher temperatures noted with cigarettes. All were nonsmokers. Neutrophil extracellular traps were reported in two biopsies. Compared to our prior biopsies in our Middle East deployment database, these histopathologic results are similar, since all database biopsies have constrictive bronchiolitis, one has lung fibrosis with titanium bound to iron in fixed mathematical ratios of 1:7 and demonstrated polarizable crystals. These results, particularly constrictive bronchiolitis and polarizable crystals, support the prior data of King et al. (N. Engl. J. Med. 365:222-230, 2011) Soldiers in this cohort deployed to Iraq and Afghanistan since 2003, with exposure to airborne hazards, including sandstorms, burn pits, and improvised explosive devices, are at high risk for developing chronic clinical respiratory problems, including: (1) reduction in respiratory muscle strength; (2) airways hyperresponsiveness; and (3) distal airway narrowing, which may be associated with histopathologic evidence of lung damage, reflecting inhalation of burned particles from burn pits along with particulate matter/dust. Non-invasive pulmonary diagnostic tests are a predictor of burn pit-induced lung injury.


Assuntos
Bronquiolite Obliterante , Lesão Pulmonar , Hidrocarbonetos Policíclicos Aromáticos , Campanha Afegã de 2001- , Afeganistão , Bronquiolite Obliterante/patologia , Poeira , Humanos , Incineração , Iraque , Guerra do Iraque 2003-2011 , Ferro , Pulmão/patologia , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Material Particulado , Estudos Retrospectivos , Titânio , Estados Unidos/epidemiologia
2.
J Trauma Acute Care Surg ; 84(6): 847-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29554047

RESUMO

BACKGROUND: Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. METHODS: C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. RESULTS: All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. CONCLUSIONS: Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.


Assuntos
Citocinas/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Proteína de Ligação a Vitamina D/deficiência , Doença Aguda , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glicerol , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Coxa da Perna
3.
FASEB J ; 32(5): 2339-2353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29259036

RESUMO

Bioactive sphingolipids are modulators of immune processes and their metabolism is often dysregulated in ulcerative colitis, a major category of inflammatory bowel disease (IBD). While multiple axes of sphingolipid metabolism have been investigated to delineate mechanisms regulating ulcerative colitis, the role of acid ceramidase (AC) in intestinal inflammation is yet to be characterized. Here we demonstrate that AC expression is elevated selectively in the inflammatory infiltrate in human and murine colitis. To probe for mechanistic insight into how AC up-regulation can impact intestinal inflammation, we investigated the selective loss of AC expression in the myeloid population. Using a model of intestinal epithelial injury, we demonstrate that myeloid AC conditional knockout mice exhibit impairment of neutrophil recruitment to the colon mucosa as a result of defective cytokine and chemokine production. Furthermore, the loss of myeloid AC protects from tumor incidence in colitis-associated cancer (CAC) and inhibits the expansion of neutrophils and granulocytic myeloid-derived suppressor cells in the tumor microenvironment. Collectively, our results demonstrate a tissue-specific role for AC in regulating neutrophilic inflammation and cytokine production. We demonstrate novel mechanisms of how granulocytes are recruited to the colon that may have therapeutic potential in intestinal inflammation, IBD, and CAC.-Espaillat, M. P., Snider, A. J., Qiu, Z., Channer, B., Coant, N., Schuchman, E. H., Kew, R. R., Sheridan, B. S., Hannun, Y. A., Obeid, L. M. Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment.


Assuntos
Ceramidase Ácida/biossíntese , Colite Ulcerativa/enzimologia , Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Mucosa Intestinal/enzimologia , Neutrófilos/enzimologia , Regulação para Cima , Ceramidase Ácida/genética , Animais , Quimiocinas/biossíntese , Quimiocinas/genética , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/enzimologia , Células Supressoras Mieloides/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neutrófilos/patologia , Microambiente Tumoral/genética
4.
Mol Immunol ; 74: 18-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111569

RESUMO

A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.


Assuntos
Proteínas de Transporte/química , Proteína gp41 do Envelope de HIV/imunologia , Proteínas Mitocondriais/química , Receptores de Reconhecimento de Padrão/química , Proteínas do Core Viral/imunologia , Sítios de Ligação/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte/imunologia , Humanos , Proteínas Mitocondriais/imunologia , Monócitos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células U937
5.
Biochim Biophys Acta ; 1843(9): 1796-1804, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24747690

RESUMO

CXCL12 and its unique receptor CXCR4, is critical for the homing of a variety of cell lineages during both development and tissue repair. CXCL12 is particularly important for the recruitment of hemato/lymphopoietic cells to their target organs. In conjunction with the damage-associated alarmin molecule HMGB1, CXCL12 mediates immune effector and stem/progenitor cell migration towards damaged tissues for subsequent repair. Previously, we showed that cell migration to HMGB1 simultaneously requires both IKKß and IKKα-dependent NF-κB activation. IKKß-mediated activation maintains sufficient expression of HMGB1's receptor RAGE, while IKKα-dependent NF-κB activation ensures continuous production of CXCL12, which complexes with HMGB1 to engage CXCR4. Here using fibroblasts and primary mature macrophages, we show that IKKß and IKKα are simultaneously essential for cell migration in response to CXCL12 alone. Non-canonical NF-κB pathway subunits RelB and p52 are also both essential for cell migration towards CXCL12, suggesting that IKKα is required to drive non-canonical NF-κB signaling. Flow cytometric analyses of CXCR4 expression show that IKKß, but not IKKα, is required to maintain a critical threshold level of this CXCL12 receptor. Time-lapse video microscopy experiments in primary MEFs reveal that IKKα is required both for polarization of cells towards a CXCL12 gradient and to establish a basal level of velocity towards CXCL12. In addition, CXCL12 modestly up-regulates IKKα-dependent p52 nuclear translocation and IKKα-dependent expression of the CXCL12 gene. On the basis of our collective results we posit that IKKα is needed to maintain the basal expression of a critical protein co-factor required for cell migration to CXCL12.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Movimento Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/genética , Fator de Transcrição RelA/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
J Immunol ; 191(2): 848-56, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23752613

RESUMO

Knowledge of how neutrophils respond to chemotactic signals in a complex inflammatory environment is not completely understood. Moreover, even less is known about factors in physiological fluids that regulate the activity of chemoattractants. The vitamin D-binding protein (DBP) has been shown to significantly enhance chemotaxis to complement activation peptide C5a using purified proteins in vitro, and by ex vivo depletion of DBP in physiological fluids, but this function has not been determined in vivo. DBP null ((-/-)) mice were used to investigate how a systemic absence of this plasma protein affects leukocyte recruitment in alveolitis models of lung inflammation. DBP(-/-) mice had significantly reduced (~50%) neutrophil recruitment to the lungs compared with their wild-type DBP(+/+) counterparts in three different alveolitis models, two acute and one chronic. The histology of DBP(-/-) mouse lungs also showed significantly less injury than wild-type animals. The chemotactic cofactor function of DBP appears to be selective for neutrophil recruitment, but, in contrast to previous in vitro results, in vivo DBP can enhance the activity of other chemoattractants, including CXCL1. The reduced neutrophil response in DBP(-/-) mice could be rescued to wild-type levels by administering exogenous DBP. Finally, in inflammatory fluids, DBP binds to G-actin released from damaged cells, and this complex may be the active chemotactic cofactor. To our knowledge, results show for the first time that DBP is a significant chemotactic cofactor in vivo and not specific for C5a, suggesting that this ubiquitous plasma protein may have a more significant role in neutrophil recruitment than previously recognized.


Assuntos
Quimiocina CXCL1/imunologia , Complemento C5a/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Pneumonia/imunologia , Proteína de Ligação a Vitamina D/metabolismo , Actinas/metabolismo , Animais , Movimento Celular/imunologia , Ativação do Complemento , Inflamação , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteína de Ligação a Vitamina D/deficiência , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/farmacologia
7.
J Immunol ; 188(5): 2380-6, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22287708

RESUMO

HMGB1 is a chromatin architectural protein that is released by dead or damaged cells at sites of tissue injury. Extracellular HMGB1 functions as a proinflammatory cytokine and chemoattractant for immune effector and progenitor cells. Previously, we have shown that the inhibitor of NF-κB kinase (IKK)ß- and IKKα-dependent NF-κB signaling pathways are simultaneously required for cell migration to HMGB1. The IKKß-dependent canonical pathway is needed to maintain expression of receptor for advanced glycation end products, the ubiquitously expressed receptor for HMGB1, but the target of the IKKα non-canonical pathway was not known. In this study, we show that the IKKα-dependent p52/RelB noncanonical pathway is critical to sustain CXCL12/SDF1 production in order for cells to migrate toward HMGB1. Using both mouse bone marrow-derived macrophages and mouse embryo fibroblasts (MEFs), it was observed that neutralization of CXCL12 by a CXCL12 mAb completely eliminated chemotaxis to HMGB1. In addition, the HMGB1 migration defect of IKKα KO and p52 KO cells could be rescued by adding recombinant CXCL12 to cells. Moreover, p52 KO MEFs stably transduced with a GFP retroviral vector that enforces physiologic expression of CXCL12 also showed near normal migration toward HMGB1. Finally, both AMD3100, a specific antagonist of CXCL12's G protein-coupled receptor CXCR4, and an anti-CXCR4 Ab blocked HMGB1 chemotactic responses. These results indicate that HMGB1-CXCL12 interplay drives cell migration toward HMGB1 by engaging receptors of both chemoattractants. This novel requirement for a second receptor-ligand pair enhances our understanding of the molecular mechanisms regulating HMGB1-dependent cell recruitment to sites of tissue injury.


Assuntos
Comunicação Autócrina/imunologia , Movimento Celular/imunologia , Quimiocina CXCL12/biossíntese , Proteína HMGB1/fisiologia , Quinase I-kappa B/fisiologia , Subunidade p52 de NF-kappa B/fisiologia , Transdução de Sinais/imunologia , Fator de Transcrição RelB/fisiologia , Animais , Transformação Celular Neoplásica , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/fisiologia , Quinase I-kappa B/biossíntese , Quinase I-kappa B/deficiência , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subunidade p52 de NF-kappa B/biossíntese , Subunidade p52 de NF-kappa B/deficiência , Fator de Transcrição RelB/biossíntese , Células Tumorais Cultivadas
8.
Mol Immunol ; 49(3): 495-503, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22014686

RESUMO

Factors in physiological fluids that regulate the chemotactic activity of complement activation peptides C5a and C5a des Arg are not well understood. The vitamin D binding protein (DBP) has been shown to significantly enhance chemotaxis to C5a/C5a des Arg. More recently, platelet-derived thrombospondin-1 (TSP-1) has been shown to facilitate the augmentation of C5a-induced chemotaxis by DBP. The objective of this study was to better characterize these chemotactic cofactors and investigate the role that cell surface TSP-1 receptors CD36 and CD47 may play in this process. The chemotactic activity in C-activated normal serum, citrated plasma, DBP-depleted serum or C5 depleted serum was determined for both normal human neutrophils and U937 cell line transfected with the C5a receptor (U937-C5aR). In addition, levels of C5a des Arg, DBP and TSP-1 in these fluids were measured by RIA or ELISA. Results show that there is a clear hierarchy with C5a being the essential primary signal (DBP or TSP-1 will not function in the absence of C5a), DBP the necessary cofactor and TSP-1 a dependent tertiary factor, since it cannot function to enhance chemotaxis to C5a without DBP. Measurement of the C5a-induced intracellular calcium flux confirmed the same hierarchy observed with chemotaxis. Moreover, analysis of bronchoalveolar lavage fluid (BALF) from patients with the adult respiratory distress syndrome (ARDS) demonstrated that C5a-dependent chemotactic activity is significantly decreased after anti-DBP treatment. Finally, results show that TSP-1 utilizes cell surface receptors CD36 and CD47 to augment chemotaxis, but DBP does not bind to TSP-1, CD36 or CD47. The results clearly demonstrate that C5a/C5a des Arg needs both DBP and TSP-1 for maximal chemotactic activity and suggest that the regulation of C5a chemotactic activity in physiological fluids is more complex than previously thought.


Assuntos
Antígeno CD47/imunologia , Quimiotaxia , Complemento C5a/imunologia , Trombospondina 1/imunologia , Antígenos CD36/imunologia , Antígeno CD47/sangue , Linhagem Celular Tumoral , Complemento C5a/antagonistas & inibidores , Humanos , Ligantes , Ligação Proteica , Trombospondina 1/sangue
9.
J Immunol ; 186(6): 3517-26, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21300822

RESUMO

Dysregulation of apoptosis is associated with the development of human cancer and resistance to anticancer therapy. We have previously shown in tumor xenografts that DNA alkylating agents induce sporadic cell necrosis and regression of apoptosis-deficient tumors. Sporadic tumor cell necrosis is associated with extracellular release of cellular content such as the high mobility group box 1 (HMGB1) protein and subsequent recruitment of innate immune cells into the tumor tissue. It remained unclear whether HMGB1 and the activation of innate immunity played a role in tumor response to chemotherapy. In this study, we show that whereas DNA alkylating therapy leads to a complete tumor regression in an athymic mouse tumor xenograft model, it fails to do so in tumors deficient in HMGB1. The HMGB1-deficient tumors have an impaired ability to recruit innate immune cells including macrophages, neutrophils, and NK cells into the treated tumor tissue. Cytokine array analysis reveals that whereas DNA alkylating treatment leads to suppression of protumor cytokines such as IL-4, IL-10, and IL-13, loss of HMGB1 leads to elevated levels of these cytokines upon treatment. Suppression of innate immunity and HMGB1 using depleting Abs leads to a failure in tumor regression. Taken together, these results indicate that HMGB1 plays an essential role in activation of innate immunity and tumor clearance in response to DNA alkylating agents.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteína HMGB1/fisiologia , Imunidade Inata/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/prevenção & controle , Animais , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Proteína HMGB1/deficiência , Proteína HMGB1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Necrose , Neoplasias Experimentais/patologia , Distribuição Aleatória
10.
J Immunol ; 184(8): 4497-509, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20231695

RESUMO

Inhibitor of NF-kappaB kinases beta (IKKbeta) and alpha (IKKalpha) activate distinct NF-kappaB signaling modules. The IKKbeta/canonical NF-kappaB pathway rapidly responds to stress-like conditions, whereas the IKKalpha/noncanonical pathway controls adaptive immunity. Moreover, IKKalpha can attenuate IKKbeta-initiated inflammatory responses. High mobility group box 1 (HMGB1), a chromatin protein, is an extracellular signal of tissue damage-attracting cells in inflammation, tissue regeneration, and scar formation. We show that IKKalpha and IKKbeta are each critically important for HMGB1-elicited chemotaxis of fibroblasts, macrophages, and neutrophils in vitro and neutrophils in vivo. By time-lapse microscopy we dissected different parameters of the HMGB1 migration response and found that IKKalpha and IKKbeta are each essential to polarize cells toward HMGB1 and that each kinase also differentially affects cellular velocity in a time-dependent manner. In addition, HMGB1 modestly induces noncanonical IKKalpha-dependent p52 nuclear translocation and p52/RelB target gene expression. Akin to IKKalpha and IKKbeta, p52 and RelB are also required for HMGB1 chemotaxis, and p52 is essential for cellular orientation toward an HMGB1 gradient. RAGE, a ubiquitously expressed HMGB1 receptor, is required for HMGB1 chemotaxis. Moreover, IKKbeta, but not IKKalpha, is required for HMGB1 to induce RAGE mRNA, suggesting that RAGE is at least one IKKbeta target involved in HMGB1 migration responses, and in accord with these results enforced RAGE expression rescues the HMGB1 migration defect of IKKbeta, but not IKKalpha, null cells. Thus, proinflammatory HMGB1 chemotactic responses mechanistically require the differential collaboration of both IKK-dependent NF-kappaB signaling pathways.


Assuntos
Quimiotaxia/imunologia , Proteína HMGB1/fisiologia , Quinase I-kappa B/fisiologia , Animais , Células Cultivadas , Quimiotaxia/genética , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/imunologia , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/citologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
11.
J Invest Dermatol ; 123(5): 832-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15482468

RESUMO

Many cell types express a membrane receptor, activated by trypsin-like proteases, termed protease-activated receptor-2 (PAR-2). Previous studies describing PAR-2 expression on fibroblasts have been conflicting. In this report, we investigated in vitro PAR-2 expression on several fibroblast cell lines using flow cytometry, immunohistology, and immunoblots of cell lysates. Consistent PAR-2 expression was detected in cultured fibroblasts, although we observed heterogeneity of cellular expression among the cell lines. Some fibroblast lines expressed PAR-2 predominantly as an intracellular protein with differing cytoplasmic staining patterns, whereas other fibroblast lines displayed PAR-2 primarily as a cell surface receptor. Immunoblots of cell lysates with polyclonal anti-PAR-2 demonstrated a 44 kDa band, the predicted molecular weight for the PAR-2 core protein. Furthermore, we noted that expression of PAR-2 was subject to regulation. Fibroblasts grown within a collagen matrix downregulated receptor expression whereas increased PAR-2 expression was observed by the addition of fibroblast growth factors PDGF-BB and TGF-beta. This study may explain the previous inconsistencies in PAR-2 expression observed on tissue fibroblasts. Results indicate that the degree of fibroblast proliferation, attenuated by extracellular matrix and upregulated by growth factors, influences whether fibroblasts express PAR-2 and, thus, would be responsive to protease signaling.


Assuntos
Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Receptor PAR-2/genética , Fator de Crescimento Transformador beta/farmacologia , Becaplermina , Células Cultivadas , Fibroblastos/citologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Proteínas Proto-Oncogênicas c-sis , Receptor PAR-2/metabolismo
12.
J Biol Chem ; 279(51): 53282-7, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15485893

RESUMO

The vitamin D-binding protein (DBP), also known as group-specific component or Gc-globulin, is a multifunctional plasma protein that can significantly enhance the leukocyte chemotactic activity to C5a and C5a des-Arg. DBP is a member of the albumin gene family and has a triple domain modular structure with extensive disulfide bonding that is characteristic of this protein family. The goal of this study was to identify a region in DBP that mediates the chemotactic cofactor function for C5a. Full-length and truncated versions of DBP (Gc-2 allele) were expressed in Escherichia coli using a glutathione S-transferase fusion protein expression system. The structure of the expressed proteins was confirmed by SDS-PAGE and immunoblotting, whereas protein function was verified by quantitating the binding of [(3)H]vitamin D. Dibutyryl cAMP-differentiated HL-60 cells were utilized to test purified natural DBP and recombinant expressed DBP (reDBP) for their ability to enhance chemotaxis and intracellular Ca(2+) flux to C5a. Natural and full-length reDBP (458 amino acid residues) as well as truncated reDBPs that contained the N-terminal domain I (domains I and II, residues 1-378; domain I, residues 1-191) significantly enhanced both cell movement and intracellular Ca(2+) concentrations in response to C5a. Progressive truncation of DBP domain I localized the chemotactic enhancing region between residues 126-175. Overlapping peptides corresponding to this region were synthesized, and results indicate that a 20-amino-acid sequence (residues 130-149, 5'-EAFRKDPKEYANQFMWEYST-3') in domain I of DBP is essential for its C5a chemotactic cofactor function.


Assuntos
Proteínas de Membrana/fisiologia , Receptores de Complemento/fisiologia , Proteína de Ligação a Vitamina D/fisiologia , Alelos , Western Blotting , Cálcio/química , Diferenciação Celular , Movimento Celular , Quimiotaxia , Dissulfetos/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Glutationa Transferase/metabolismo , Células HL-60 , Humanos , Immunoblotting , Cinética , Ligantes , Proteínas de Membrana/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptor da Anafilatoxina C5a , Receptores de Complemento/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/química , Proteína de Ligação a Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA