Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400023, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046870

RESUMO

Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al, presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values as large as for "magnetosomes" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by HR-TEM to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores.

2.
Inorg Chem ; 56(14): 8232-8243, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28671822

RESUMO

The polyol route is a versatile and up-scalable method to produce large batches of iron oxide nanoparticles with well-defined structures and magnetic properties. Importance of parameters such as temperature and reaction time, heating profile, nature of the polyol solvent or organometallic precursors on nanostructure and properties has already been described in the literature. Yet, the crucial role of water in the forced hydrolysis pathway has never been reported, despite its mandatory presence for nanoparticle production. This communication investigates the influence of the water amount and temperature at which it is injected in the reflux system for either a pure polyol solvent system or a mixture with poly(hydroxy)amine. Distinct morphologies of nanoparticles were thereby obtained, from ultra-ultra-small smooth spheres down to 4 nm in diameter to larger ones up to 37 nm. Well-defined multicore assemblies with narrow grain size dispersity termed nanoflowers were also synthesized. A diverse and large library of samples was obtained by manipulating the nature of solvents and the amount of added water while keeping all other parameters constant. The different morphologies lead to magnetic nanoparticles suitable for important biomedical applications such as magnetic hyperthermia, magnetic resonance imaging (MRI) contrast agent, or both.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA