Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 913, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195703

RESUMO

Glucocorticoids (GC) like dexamethasone (Dex) are potent anti-inflammatory agents with diverse cellular functions including the potentiation of the activity of AU-rich elements (AREs). AREs are cis-acting instability sequence elements located in the 3'UTRs of many inflammatory mediator mRNAs. Here, available RNA-seq data were used to investigate the effect of GCs on the ARE-mRNA-transcriptome. At a global scale, ARE-mRNAs had a tendency to be downregulated after GC-treatment of the A549 lung cancer cell-line, but with notable cases of upregulation. mRNA stability experiments indicated that not only the downregulated, but also the upregulated ARE-mRNAs are destabilized by Dex-treatment. Several of the most upregulated ARE-mRNAs code for anti-inflammatory mediators including the established GC targets DUSP1 and ZFP36; both code for proteins that target ARE-containing mRNAs for destruction. GCs are widely used in the treatment of COVID-19 patients; we show that ARE-mRNAs are more likely to regulate in opposite directions between Dex-treatment and SARS-CoV-2 infections compared to non-ARE mRNAs. The effect of GC treatment on ARE-mRNA abundance was also investigated in blood monocytes of COVID-19 patients. The results were heterogeneous; however, in agreement with in vitro observations, ZFP36 and DUSP1 were often amongst the most differentially expressed mRNAs. The results of this study propose a universal destabilization of ARE-mRNAs by GCs, but a diverse overall outcome in vitro likely due to induced transcription or due to the heterogeneity of COVID-19 patient's responses in vivo.


Assuntos
COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Regiões 3' não Traduzidas , Células A549 , COVID-19/genética , RNA Mensageiro/genética
2.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111129

RESUMO

Inhibition of apoptosis is one of the hallmarks of cancer and is a target of various therapeutic interventions. BIRC5 is an inhibitor of apoptosis that is aberrantly expressed in cancer leading to sustained growth of tumours. Post-transcriptional control mechanisms involving RNA-binding proteins and AU-rich elements (AREs) are fundamental to many cellular processes and changes in the expression or function of these proteins can promote an aberrant and pathological phenotype. BIRC5 mRNA has an ARE in its 3' UTR making it a candidate for regulation by the RNA binding proteins tristetraprolin (TTP) and HuR (ELAVL1). In this study, we investigated the binding of TTP and HuR by RNA-immunoprecipitation assays and found that these proteins were associated with BIRC5 mRNA to varying extents. Consequently, BIRC5 expression decreased when TTP was overexpressed and apoptosis was induced. In the absence of TTP, BIRC5 mRNA was stabilized, protein expression increased and the number of apoptotic cells declined. As an ARE-mRNA stabilizing protein, recombinant HuR led to upregulation of BIRC5 expression, whereas HuR silencing was concomitant with downregulation of BIRC5 mRNA and protein and increased cell death. Survival analyses demonstrated that increased TTP and low BIRC5 expression predicted an overall better prognosis compared to dysregulated TTP and high BIRC5. Thus, the results present a novel target of ARE-mediated post-transcriptional regulation.


Assuntos
Neoplasias da Mama , Tristetraprolina , Humanos , Feminino , Tristetraprolina/genética , Tristetraprolina/metabolismo , Survivina/genética , Survivina/metabolismo , Neoplasias da Mama/genética , Regiões 3' não Traduzidas , Apoptose/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Estabilidade de RNA/genética
3.
Front Immunol ; 14: 1171816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483610

RESUMO

Introduction: BRAFV600E mutations frequently occur in papillary thyroid cancer (PTC). ß-catenin, encoded by CTNNB1, is a key downstream component of the canonical Wnt signaling pathway and is often overexpressed in PTC. BRAFV600E-driven PTC tumors rely on Wnt/ß-catenin signaling to sustain growth and progression. Methods: In the present study, we investigated the tumorigenicity of thyroid cancer cells derived from BRAFV600E PTC mice following Ctnnb1 ablation (BVE-Ctnnb1null). Results: Remarkably, the tumorigenic potential of BVE-Ctnnb1null tumor cells was lost in nude mice. Global gene expression analysis of BVE-Ctnnb1null tumor cells showed up-regulation of NKG2D receptor activating ligands (H60a, H60b, H60c, Raet1a, Raet1b, Raet1c, Raet1d, Raet1e, and Ulbp1) and down-regulation of inhibitory MHC class I molecules H-2L and H-2K2 in BVE-Ctnnb1null tumor cells. In vitro cytotoxicity assay demonstrated that BVE-Ctnnb1wt tumor cells were resistant to NK cell-mediated cytotoxicity, whereas BVE-Ctnnb1null tumor cells were sensitive to NK cell-mediated killing. Furthermore, the overexpression of any one of these NKG2D ligands in the BVE-Ctnnb1wt cell line resulted in a significant reduction of tumor growth in nude mice. Conclusions: Our results indicate that active ß-catenin signaling inhibits NK cell-mediated immune responses against thyroid cancer cells. Targeting the ß-catenin signaling pathway may have significant therapeutic benefits for BRAF-mutant thyroid cancer by not only inhibiting tumor growth but also enhancing host immune surveillance.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Camundongos , Animais , Camundongos Nus , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Regulação para Cima , Proteínas Proto-Oncogênicas B-raf , Ligantes , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Via de Sinalização Wnt/fisiologia , Proteínas de Membrana/metabolismo
4.
Oncogenesis ; 10(9): 61, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535639

RESUMO

Amplification of specific cancer genes leads to their over-expression contributing to tumor growth, spread, and drug resistance. Little is known about the ability of these amplified oncogenes to augment the expression of cancer genes through post-transcriptional control. The AU-rich elements (ARE)-mediated mRNA decay is compromised for many key cancer genes leading to their increased abundance and effects. Here, we performed a post-transcriptional screen for frequently amplified cancer genes demonstrating that ERBB2/Her2 overexpression was able to augment the post-transcriptional effects. The ERBB1/2 inhibitor, lapatinib, led to the reversal of the aberrant ARE-mediated process in ERBB2-amplified breast cancer cells. The intersection of overexpressed genes associated with ERBB2 amplification in TCGA datasets with ARE database (ARED) identified ERBB2-associated gene cluster. Many of these genes were over-expressed in the ERBB2-positive SKBR3 cells compared to MCF10A normal-like cells, and were under-expressed due to ERBB2 siRNA treatment. Lapatinib accelerated the ARE-mRNA decay for several ERBB2-regulated genes. The ERBB2 inhibitor decreased both the abundance and stability of the phosphorylated inactive form of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). The ERBB2 siRNA was also able to reduce the phosphorylated ZFP36/TTP form. In contrast, ectopic expression of ERBB2 in MCF10A or HEK293 cells led to increased abundance of the phosphorylated ZFP36/TTP. The effect of ERBB2 on TTP phosphorylation appeared to be mediated via the MAPK-MK2 pathway. Screening for the impact of other amplified cancer genes in HEK293 cells also demonstrated that EGFR, AKT2, CCND1, CCNE1, SKP2, and FGFR3 caused both increased abundance of phosphorylated ZFP36/TTP and ARE-post-transcriptional reporter activity. Thus, specific amplified oncogenes dysregulate post-transcriptional ARE-mediated effects, and targeting the ARE-mediated pathway itself may provide alternative therapeutic approaches.

5.
Mol Cancer Ther ; 20(9): 1603-1613, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224366

RESUMO

BRAFV600E mutation is the most frequent genetic alteration in papillary thyroid cancer (PTC). ß-Catenin (Ctnnb1) is a key downstream component of canonical Wnt signaling pathway and is frequently overexpressed in PTC. BRAF V600E-driven tumors have been speculated to rely on Wnt/ß-catenin signaling to sustain its growth, although many details remain to be elucidated. In this study, we investigated the role of ß-catenin in BrafV600E -driven thyroid cancer in a transgenic mouse model. In Braf V600E mice with wild-type (WT) Ctnnb1 (BVE-Ctnnb1WT or BVE), overexpression of ß-catenin was observed in thyroid tumors. In Braf V600E mice with Ctnnb1 knockout (BVE-Ctnnb1null), thyroid tumor growth was slowed with significant reduction in papillary architecture. This was associated with increased expression of genes involved in thyroid hormone synthesis, elevated 124iodine uptake, and serum T4. The survival of BVE-Ctnnb1null mice was increased by more than 50% during 14-month observation. Mechanistically, downregulation of MAPK, PI3K/Akt, and TGFß pathways and loss of epithelial-mesenchymal transition (EMT) were demonstrated in the BVE-Ctnnb1null tumors. Treatment with dual ß-catenin/KDM4A inhibitor PKF118-310 dramatically improved the sensitivity of BVE-Ctnnb1WT tumor cells to BRAFV600E inhibitor PLX4720, resulting in significant growth arrest and apoptosis in vitro, and tumor regression and differentiation in vivo These findings indicate that ß-catenin signaling plays an important role in thyroid cancer growth and resistance to BRAFV600E inhibitors. Simultaneously targeting both Wnt/ß-catenin and MAPK signaling pathways may achieve better therapeutic outcome in BRAFV600E inhibitor-resistant and/or radioiodine-refractory thyroid cancer.


Assuntos
Indóis/farmacologia , Mutação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Câncer Papilífero da Tireoide/prevenção & controle , Neoplasias da Glândula Tireoide/prevenção & controle , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/fisiologia , Animais , Diferenciação Celular , Transição Epitelial-Mesenquimal , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/etiologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
6.
Mol Oncol ; 15(8): 2120-2139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411958

RESUMO

Dysfunctions in post-transcriptional control are observed in cancer and chronic inflammatory diseases. Here, we employed a kinome inhibitor library (n = 378) in a reporter system selective for 3'-untranslated region-AU-rich elements (ARE). Fifteen inhibitors reduced the ARE-reporter activity; among the targets is the polo-like kinase 1 (PLK1). RNA-seq experiments demonstrated that the PLK1 inhibitor, volasertib, reduces the expression of cytokine and cell growth ARE mRNAs. PLK1 inhibition caused accelerated mRNA decay in cancer cells and was associated with reduced phosphorylation and stability of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). Ectopic expression of PLK1 increased abundance and stability of high molecular weight of ZFP36/TTP likely of the phosphorylated form. PLK1 effect was associated with the MAPK-MK2 pathway, a major regulator of ARE-mRNA stability, as evident from MK2 inhibition, in vitro phosphorylation, and knockout experiments. Mutational analysis demonstrates that TTP serine 186 is a target for PLK1 effect. Treatment of mice with the PLK1 inhibitor reduced both ZFP36/TTP phosphorylation in xenograft tumor tissues, and the tumor size. In cancer patients' tissues, PLK1/ARE-regulated gene cluster was overexpressed in solid tumors and associated with poor survival. The data showed that PLK1-mediated post-transcriptional aberration could be a therapeutic target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas , Animais , Humanos , Camundongos , Camundongos Nus , Fosforilação , Pteridinas/farmacologia , Tristetraprolina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
7.
Breast Cancer Res ; 22(1): 49, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414408

RESUMO

BACKGROUND: Most breast cancer-associated fibroblasts (CAFs) are active and important cancer-promoting cells, with significant impact on patient prognosis. Therefore, we investigated here the role of the protein kinase ATR in breast stromal fibroblasts in the prognosis of locally advanced breast cancer patients. METHODS: We have used immunohistochemistry to assess the level of ATR in breast cancer tissues and their adjacent normal tissues. Immunoblotting as well as quantitative RT-PCR were utilized to show the role of breast cancer cells and IL-6 as well as AUF-1 in downregulating ATR in breast stromal fibroblasts. Engineered human breast tissue model was also used to show that ATR-deficient breast stromal fibroblasts enhance the growth of breast cancer cells. RESULTS: We have shown that the protein kinase ATR is downregulated in cancer cells and their neighboring CAFs in breast cancer tissues as compared to their respective adjacent normal tissues. The implication of cancer cells in ATR knockdown in CAFs has been proven in vitro by showing that breast cancer cells downregulate ATR in breast fibroblasts in an IL-6/STAT3-dependent manner and via AUF-1. In another cohort of 103 tumors from locally advanced breast cancer patients, we have shown that absence or reduced ATR expression in tumoral cells and their adjacent stromal fibroblasts is correlated with poor overall survival as well as disease-free survival. Furthermore, ATR expression in CAFs was inversely correlated with tumor recurrence and progression. CONCLUSION: ATR downregulation in breast CAFs is frequent, procarcinogenic, and correlated with poor patient survival.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Recidiva Local de Neoplasia/patologia , Células Estromais/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Células Estromais/patologia
8.
RNA Biol ; 16(3): 309-319, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664390

RESUMO

AU-rich elements (AREs) are cis-acting instability and translation inhibition elements that are present in the 3'UTR of most inducible inflammatory mRNAs such as TNF and Cxcl2. mRNAs that contain AREs are, by default, repressed and only transiently expressed in response to stimuli. They are targeted by the inducible RNA-binding protein Tristetraprolin (TTP) which blocks their translation and facilitates their decay, thereby contributing to the quick termination of their expression. The exogenous over-expression of TTP in HEK293 cells can unexpectedly lead to the upregulation and extended expression of a nanoLuciferase reporter that contains the ARE of TNF. Here we show that, a moderate downregulation of the highly expressed endogenous TTP after LPS induction by siRNA in macrophages can lead to a reduction in the release of TNF and Cxcl2. We propose that, in contrast to their canonical function, very high levels of induced TTP at the onset of the inflammatory response can enhance the expression of ARE-mRNAs at the post-transcriptional level, independently of phosphorylation status. As the inflammatory response progresses, TTP levels diminish but they continuously regain their ability to reduce the expression of ARE-mRNAs to reach a turning point of 'optimal TTP level' with a maximum ability to repress ARE-mRNA expression. Below this level, a further reduction in TTP levels now leads to the loss of canonical-TTP function resulting in increased ARE-mRNA expression. These novel findings should contribute to the understanding of feedback loops that control the kinetics of the inflammatory response.


Assuntos
Inflamação/genética , Inflamação/metabolismo , Processamento Pós-Transcricional do RNA , Tristetraprolina/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Animais , Quimiocina CXCL2/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Camundongos , Estabilidade de RNA , RNA Mensageiro , Tristetraprolina/química , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Immunol ; 10: 3050, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010134

RESUMO

Cyclic-di-AMP (c-di-AMP) is a bacterial second messenger that is produced by intracellular bacterial pathogens in mammalian host macrophages. Previous reports have shown that c-di-AMP is recognized by intracellular pattern recognition receptors of the innate immune system and stimulate type I interferon response. Here we report that the response to c-di-AMP includes a post-transcriptional component that is involved in the induction of additional inflammatory cytokines including IL-6, CXCL2, CCL3, and CCL4. Their mRNAs contain AU-rich elements (AREs) in their 3' UTR that promote decay and repress translation. We show that c-di-AMP leads to the phosphorylation of p38 MAPK as well as the induction of the ARE-binding protein TTP, both of which are components of a signaling pathway that modulate the expression of ARE-containing mRNAs at the post-transcriptional level. Pharmacological inhibition of p38 reduces the c-di-AMP-dependent release of induced cytokines, while TTP knockdown increases their release and mRNA stability. C-di-AMP can specifically increase the expression of a nano-Luciferase reporter that contains AREs. We propose a non-canonical intracellular mode of activation of the p38 MAPK pathway with the subsequent enhancement in the expression of inflammatory cytokines. C-di-AMP is widely distributed in bacteria, including infectious intracellular pathogens; hence, understanding of its post-transcriptional gene regulatory effect on the host response may provide novel approaches for therapy.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Fosfatos de Dinucleosídeos/metabolismo , Interações Hospedeiro-Patógeno/genética , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Animais , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Citocinas/química , Citocinas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Células RAW 264.7 , Estabilidade de RNA , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno
10.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 167-177, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29413897

RESUMO

Adenylate-uridylate (AU)-rich elements (AREs) are sequence instability elements that are known to be located in the 3' untranslated regions (UTR) in thousands of human transcripts. AREs regulate the expression of many genes at the post-transcriptional level, and they are essential for many normal cellular functions. We conducted a transcriptome-wide screen for AREs and found that they are most abundant in introns, with up to 25% of introns containing AREs corresponding to 58% of human genes. Clustering studies of ARE size, complexity, and distribution revealed that, in introns, longer AREs with two or more overlapping repeats are more abundant than in the 3'UTR, and only introns can contain very long AREs with 6-14 overlapping AUUUA pentamers. We found that intronic sites of the ARE binding proteins HuR/ELAVL1, ZFP36/TTP, AUF1, and BRF1/ZFP36L1 overlap with the intronic AREs with HuR being most abundant. Accordingly, RNA-IP experiments demonstrated a specific association of HuR with reporter and endogenous pre-mRNAs that contain intronic AREs. Moreover, HuR knockdown led to a significant general reduction in the mRNA levels of genes that contain intronic AREs and to a specific reduction in the expression of ARE-intronic reporters. The data represent bioinformatics analysis for key RNA-binding proteins interactions with intronic AREs and provide experimental evidence for HuR binding to AREs. The widespread distribution of intronic AREs and their particular association with HuR and HuR binding sites indicates that more than half of human genes can be regulated post-transcriptionally by AREs.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica , Íntrons/genética , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação/genética , Proteína Semelhante a ELAV 1/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Interferência de RNA
11.
Sci Signal ; 11(518)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463777

RESUMO

The enzyme pyrimidine 5'-nucleotidase (NT5C3A), which mediates nucleotide catabolism, was previously thought to be restricted to blood cells. We showed that expression of the gene encoding NT5C3A was induced by type I interferons (IFNs) in multiple cell types and that NT5C3A suppressed cytokine production through inhibition of the nuclear factor κB (NF-κB) pathway. NT5C3A expression required both an intronic IFN-stimulated response element and the IFN-stimulated transcription factor IRF1. Overexpression of NT5C3A, but not of its catalytic mutants, suppressed IL-8 production by HEK293 cells. Whereas knockdown of NT5C3A enhanced tumor necrosis factor (TNF)-stimulated IL-8 production, it reduced the IFN-mediated suppression of Il8 expression. Overexpression of NT5C3A increased the abundance of NAD+ and the activation of the sirtuins SIRT1 and SIRT6, which are NAD+-dependent deacetylases. NT5C3A-stimulated sirtuin activity resulted in deacetylation of histone H3 and the NF-κB subunit RelA (also known as p65), both of which were associated with the proximal region of the Il8 promoter, thus repressing the transcription of Il8 Together, these data identify an anti-inflammatory pathway that depends on the catalytic activity of NT5C3A and functions as a negative feedback regulator of inflammatory cytokine signaling.


Assuntos
5'-Nucleotidase/genética , Citocinas/metabolismo , Epigênese Genética , Glicoproteínas/genética , Interferons/metabolismo , Transdução de Sinais/genética , 5'-Nucleotidase/metabolismo , Acetilação , Citosol/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicoproteínas/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
12.
Genome Biol ; 18(1): 144, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754144

RESUMO

BACKGROUND: Variable expressivity is a well-known phenomenon in which patients with mutations in one gene display varying degrees of clinical severity, potentially displaying only subsets of the clinical manifestations associated with the multisystem disorder linked to the gene. This remains an incompletely understood phenomenon with proposed mechanisms ranging from allele-specific to stochastic. RESULTS: We report three consanguineous families in which an isolated ocular phenotype is linked to a novel 3' UTR mutation in SLC4A4, a gene known to be mutated in a syndromic form of intellectual disability with renal and ocular involvement. Although SLC4A4 is normally devoid of AU-rich elements (AREs), a 3' UTR motif that mediates post-transcriptional control of a subset of genes, the mutation we describe creates a functional ARE. We observe a marked reduction in the transcript level of SLC4A4 in patient cells. Experimental confirmation of the ARE-creating mutation is shown using a post-transcriptional reporter system that reveals consistent reduction in the mRNA-half life and reporter activity. Moreover, the neo-ARE binds and responds to the zinc finger protein ZFP36/TTP, an ARE-mRNA decay-promoting protein. CONCLUSIONS: This novel mutational mechanism for a Mendelian disease expands the potential mechanisms that underlie variable phenotypic expressivity in humans to also include 3' UTR mutations with tissue-specific pathology.


Assuntos
Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Distrofias Hereditárias da Córnea/genética , Mutação , Fenótipo , Simportadores de Sódio-Bicarbonato/genética , Adulto , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Criança , Consanguinidade , Córnea/metabolismo , Córnea/patologia , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Feminino , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Análise da Randomização Mendeliana , Linhagem , Estabilidade de RNA , Simportadores de Sódio-Bicarbonato/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-27251431

RESUMO

Post-transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU-rich elements (AREs), cis-acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE-mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.


Assuntos
Elementos Ricos em Adenilato e Uridilato , Regulação da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro/genética , Animais , Humanos
14.
Cancer Res ; 76(14): 4068-80, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197193

RESUMO

Defects in AU-rich elements (ARE)-mediated posttranscriptional control can lead to several abnormal processes that underlie carcinogenesis. Here, we performed a systematic analysis of ARE-mRNA expression across multiple cancer types. First, the ARE database (ARED) was intersected with The Cancer Genome Atlas databases and others. A large set of ARE-mRNAs was over-represented in cancer and, unlike non-ARE-mRNAs, correlated with the reversed balance in the expression of the RNA-binding proteins tristetraprolin (TTP, ZFP36) and HuR (ELAVL1). Serial statistical and functional enrichment clustering identified a cluster of 11 overexpressed ARE-mRNAs (CDC6, KIF11, PRC1, NEK2, NCAPG, CENPA, NUF2, KIF18A, CENPE, PBK, TOP2A) that negatively correlated with TTP/HuR mRNA ratios and was involved in the mitotic cell cycle. This cluster was upregulated in a number of solid cancers. Experimentally, we demonstrated that the ARE-mRNA cluster is upregulated in a number of tumor breast cell lines when compared with noninvasive and normal-like breast cancer cells. RNA-IP demonstrated the association of the ARE-mRNAs with TTP and HuR. Experimental modulation of TTP or HuR expression led to changes in the mitosis ARE-mRNAs. Posttranscriptional reporter assays confirmed the functionality of AREs. Moreover, TTP augmented mitotic cell-cycle arrest as demonstrated by flow cytometry and histone H3 phosphorylation. We found that poor breast cancer patient survival was significantly associated with low TTP/HuR mRNA ratios and correlated with high levels of the mitotic ARE-mRNA signature. These results significantly broaden the role of AREs and their binding proteins in cancer, and demonstrate that TTP induces an antimitotic pathway that is diminished in cancer. Cancer Res; 76(14); 4068-80. ©2016 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas de Ligação a RNA/metabolismo , Adenina/análise , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Humanos , Poliadenilação , RNA Mensageiro/análise , Tristetraprolina/genética , Uridina/análise
15.
Carcinogenesis ; 35(9): 1983-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692066

RESUMO

CXCR4 is a chemokine receptor that is overexpressed in certain cancer types and involved in migration toward distant organs. The molecular mechanisms underlying CXCR4 expression in invasive cancer, particularly posttranscriptional regulation, are poorly understood. Here, we find that CXCR4 harbors AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR) that bind and respond to the RNA-binding proteins, tristetraprolin (TTP/ZFP36) and HuR (ELAVL1). Different experimental approaches, including RNA immunoprecipitation, 3'-UTR reporter, RNA shift and messenger RNA (mRNA) half-life studies confirmed functionality of the CXCR4 ARE. Wild-type TTP, but not the zinc finger mutant, C124R, was able to bind CXCR4 mRNA and ARE. In the invasive breast cancer phenotype, aberrant expression of CXCR4 is linked to both TTP deficiency and HuR overexpression. HuR silencing led to decreased CXCR4 mRNA stability and expression, and significant reduction in migration of the cells toward the CXCR4 ligand, CXCL12. Derepression of TTP using miR-29a inhibitor led to significant reduction in CXCR4 mRNA stability, expression and migration capability of the cells. The study shows that CXCR4 is regulated by ARE-dependent posttranscriptional mechanisms that involve TTP and HuR, and that aberration in this pathway helps cancer cells migrate toward the CXCR4 ligand. Targeting posttranscriptional control of CXCR4 expression may constitute an alternative approach in cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Expressão Gênica , Interferência de RNA , Receptores CXCR4/genética , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Quimiocina CXCL12/metabolismo , Proteínas ELAV/metabolismo , Meia-Vida , Humanos , Células MCF-7 , MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tristetraprolina/metabolismo
16.
RNA Biol ; 11(2): 124-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525793

RESUMO

The mRNAs of most inflammatory mediators are short-lived due to AU-rich elements (AREs) in their 3'-untranslated regions. AREs ensure a low basal level of expression during homeostasis and a transient nature of expression during the inflammatory response. Here, we report that the mRNA of the pro-inflammatory chemokine IL-8, which contains an archetypal ARE, is unexpectedly constitutively abundant and highly stable in primary human monocytes and macrophages. Using the pre-monocyte-like THP-1 cell line that can differentiate into macrophage-like cells, we show that a low level of unstable IL-8 mRNA in undifferentiated cells (half-life<30 min) becomes constitutively elevated and the mRNA is dramatically stabilized in differentiated THP-1 cells with a half-life of more than 15 h similar to primary monocytes and macrophages. In contrast, the level and stability of TNF-α mRNA also containing an ARE is only slightly affected by differentiation; it remains low and unstable in primary macrophages and differentiated THP-1 cells with an estimated half-life of less than 20 min. This differentiation-dependent stabilization of IL-8 mRNA is p38 MAPK-independent and is probably coupled with reduced protein translation. Reporter assays in THP-1 cells suggest that the ARE alone is not sufficient for the constitutive stabilization in macrophage-like cells and imply an effect of the natural biogenesis of the transcript on the stabilization of the mature form. We present a novel, cell type-dependent sustained stabilization of an ARE-containing mRNA with similarities to situations found in disease.


Assuntos
Interleucina-8/genética , Interleucina-8/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Elementos Ricos em Adenilato e Uridilato/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Dactinomicina/farmacologia , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ésteres de Forbol/farmacologia , Estabilidade de RNA , Fator de Necrose Tumoral alfa/genética
17.
J Interferon Cytokine Res ; 34(4): 215-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24552151

RESUMO

Post-transcriptional control of cytokine gene expression is essential for rapid and transient response to stimuli and external stress. In health, post-transcriptional control is exerted by a number of trans-acting RNA-binding proteins and cis-acting sequence elements. These elements exist largely in the 3' untranslated region and comprise microRNA targets and notably AU-rich elements, and exert regulated mRNA decay and translation repression. Defects in this control can lead to increased and sustained production of pro-inflammatory mediators contributing to several chronic inflammatory disease and cancer states. This introduction to the Journal's special issue on the topic summarizes, in a non-comprehensive list, the types of RNA-binding protein and their target cytokines, and potential contributions to disease, and presents the highlights of the individual reviews.


Assuntos
Citocinas/metabolismo , Doenças do Sistema Imunitário/imunologia , Mediadores da Inflamação/metabolismo , MicroRNAs/genética , Neoplasias/imunologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Regiões 3' não Traduzidas/genética , Elementos Ricos em Adenilato e Uridilato/genética , Animais , Citocinas/genética , Expressão Gênica , Humanos , Doenças do Sistema Imunitário/genética , Neoplasias/genética , Processamento Pós-Transcricional do RNA/imunologia , Proteínas de Ligação a RNA/genética , Transativadores/genética
18.
J Pathol ; 230(1): 28-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23401122

RESUMO

The activities of RNA-binding proteins are perturbed in several pathological conditions, including cancer. These proteins include tristetraprolin (TTP, ZFP36) and HuR (ELAVL1), which respectively promote the decay or stability of adenylate-uridylate-rich (AU-rich) mRNAs. Here, we demonstrated that increased stabilization and subsequent over-expression of HuR mRNA were coupled to TTP deficiency. These findings were observed in breast cancer cell lines with an invasive phenotype and were further confirmed in ZFP36-knockout mouse fibroblasts. We show that TTP-HuR imbalance correlated with increased expression of AU-rich element (ARE) mRNAs that code for cancer invasion genes. The microRNA miR-29a was abundant in invasive breast cancer cells when compared to non-tumourigenic cell types. When normal breast cells were treated with miR-29a, HuR mRNA and protein expression were up-regulated. MiR-29a recognized a seed target in the TTP 3' UTR and a cell-permeable miR-29a inhibitor increased TTP activity towards HuR 3' UTR. This led to HuR mRNA destabilization and restoration of the aberrant TTP-HuR axis. Subsequently, the cancer invasion factors uPA, MMP-1 and MMP-13, and cell invasiveness, were decreased. The TTP:HuR mRNA ratios were also perturbed in samples from invasive breast cancer patients when compared with normal tissues, and were associated with invasion gene expression. This study demonstrates that an aberrant ARE-mediated pathway in invasive cancer can be normalized by targeting the aberrant and functionally coupled TTP-HuR axis, indicating a potential therapeutic approach.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas ELAV/genética , MicroRNAs/genética , Estabilidade de RNA/genética , Adenina/metabolismo , Animais , Feminino , Fibroblastos/citologia , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Fenótipo , RNA Mensageiro/metabolismo , Tristetraprolina/genética , Uracila/metabolismo
19.
Methods Mol Biol ; 820: 91-104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22131027

RESUMO

Cytokine biosynthesis is tightly regulated by a number of processes, including gene expression control. Posttranscriptional control of cytokine gene expression offers a fine-tuning mechanism that contributes not only to transient biosynthesis of cytokines, but also helps in rapid and early initiation of the cytokine response. Deregulation of cytokine biosynthesis has been associated with a number of disease conditions, including autoimmune diseases, cancer, and others. Thus, there is a need for accurate measurement of posttranscriptional gene expression events in cytokine research. The method described here is a cell-based GFP assay that quantitatively measures posttranscriptional effects. This method is used for assessing the effects of modulators and conditions that lead to changes in posttranscriptional gene expression during cytokine production or for assessment of cytokine action on posttranscriptional events of gene expression.


Assuntos
Regiões 3' não Traduzidas , Clonagem Molecular/métodos , Citocinas/genética , Proteínas de Fluorescência Verde/genética , Processamento Pós-Transcricional do RNA/genética , Biologia Computacional , Citocinas/metabolismo , Primers do DNA/genética , DNA Complementar/biossíntese , DNA Complementar/genética , Eletroforese em Gel de Ágar , Células HEK293 , Humanos , RNA/isolamento & purificação , Estabilidade de RNA/genética , Transfecção/métodos
20.
Front Biosci (Landmark Ed) ; 17(5): 1846-60, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201840

RESUMO

Adenylate-uridylate rich elements (AREs) in the 3'UTRs of many transiently expressed genes regulate mRNA instability and translation. Such ARE-genes are involved in vital biological processes like cellular growth, differentiation, and immunity. Defects in their expression contribute to a variety of disease conditions like cancer, autoimmune diseases, diabetes, and cardiovascular and chronic inflammatory diseases. Over the past two decades, considerable progress has been made in understanding the mode of regulation of AREs containing mRNAs by RNA-binding proteins, miRNAs, and signaling pathways. This review focuses on the less documented sequence variation affecting ARE functions and its relation to disease. We discuss reports describing genetic polymorphisms, alternative polyadenylation, and alternative splicing that can lead to the loss or gain of function of AREs, often with significant implications to disease.


Assuntos
Variação Genética , Processamento Alternativo , Animais , Doença/genética , Humanos , Poliadenilação , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA