Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Physiol Behav ; 287: 114697, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288867

RESUMO

The therapeutic effects of alpha lipoic acid (LA) and/or caffeine-loaded chitosan nanoparticles (CCNPs) on obesity-induced memory impairment were evaluated in the present study. Rats were divided into control rats, obese rats induced by high fat diet (HFD) and obese rats treated with LA and/or CCNPs. Obesity was confirmed by measuring the body mass index (BMI). Memory and cognitive functions were evaluated by novel object recognition test (NORT). The levels of serotonin (5-HT), dopamine (DA), norepinephrine (NE), lipid peroxidation (MDA), nitric oxide (NO), reduced glutathione (GSH), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), leptin (LEP) and ghrelin (GHR) and the activities of monoamine oxidase (MAO), acetylcholinesterase (AchE) and Na+,K+,ATPase were determined in the cortex and hippocampus. The cerebral histopathological alterations were examined in obese rats. Obese rats showed impaired memory and exhibited significant neurochemical changes, including decreased levels of 5-HT, DA, GSH, GHR, and Na+,K+-ATPase activity, as well as an increase in AchE, MAO, MDA, NO, IL-1ß, TNF-α, and LEP. LA and/or CCNPs treatment reduced BMI and improved memory. LA or CCNPs alleviated the cortical and hippocampal neurochemical changes and histopathological changes induced by obesity. Furthermore, LA and CCNPs exhibited antioxidant and anti-inflammatory properties, which likely contributed to their effects. However, no synergistic effect was observed between LA and CCNPs. These findings suggest that LA or CCNPs may be a potential therapy against obesity and its adverse effects on memory, mediated by their ability to restore monoamine levels and exhibit antioxidant and anti-inflammatory properties.

2.
Int Immunopharmacol ; 129: 111627, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309094

RESUMO

The current research aims to study the therapeutic efficacy of alpha-lipoic acid (α-LA) and caffeine-loaded chitosan nanoparticles (Caf-CNs) against cardiovascular complications induced by obesity. Rats were divided randomly into: control, high fat diet (HFD) induced obesity rat model, obese rats treated with α-LA and/or Caf-CNs. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) as well as activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) significantly increased in the serum of obese rats. In addition, plasma atherogenic index, atherogenic coefficient and Castelli's risk indices I and II showed a significant increase. Additionally, levels of malondialdehyde (MDA) and nitric oxide (NO) and activity of monoamine oxidase (MAO) were significantly elevated in heart tissues of obese rats. However, cardiac Na+/K+-ATPase and acetylcholinesterase (AchE) activities and reduced glutathione (GSH), serotonin (5-HT), norepinephrine (NE) and dopamine (DA) as well as serum high-density lipoprotein cholesterol (HDL-C) were significantly reduced in obese rats. Treatment with α-LA and/or Caf-CNs ameliorated almost all the biochemical and histopathological alterations caused by obesity. In conclusion, the present data revealed that α-LA and/or Caf-CNs may be an effective therapeutic approach against cardiac complications caused by obesity through their antilipemic, anti-atherogenic, antioxidant, and anti-inflammatory activities.


Assuntos
Quitosana , Nanopartículas , Ácido Tióctico , Ratos , Animais , Ácido Tióctico/farmacologia , Cafeína/farmacologia , Quitosana/uso terapêutico , Quitosana/farmacologia , Acetilcolinesterase , Estresse Oxidativo , Obesidade/tratamento farmacológico , Obesidade/complicações , LDL-Colesterol
3.
Photochem Photobiol Sci ; 22(12): 2891-2904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917308

RESUMO

Photobiomodulation (PBM) of deep brain structures through transcranial infrared irradiation might be an effective treatment for Parkinson's disease (PD). However, the mechanisms underlying this intervention should be elucidated to optimize the therapeutic outcome and maximize therapeutic efficacy. The present study aimed at investigating the oxidative stress-related parameters of malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) and the enzymatic activities of sodium-potassium-ATPase (Na+, K+-ATPase), Acetylcholinesterase (AChE), and monoamine oxidase (MAO) and monoamine levels (dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the midbrain and striatum of reserpine-induced PD in an animal model treated with PBM. Furthermore, the locomotor behavior of the animals has been determined by the open field test. Animals were divided into three groups; the control group, the PD-induced model group, and the PD-induced model treated with the PBM group. Non-invasive treatment of animals for 14 days with 100 mW, 830 nm laser has demonstrated successful attainment in the recovery of oxidative stress, and enzymatic activities impairments induced by reserpine (0.2 mg/kg) in both midbrain and striatum of adult male Wistar rats. PBM also improved the decrease in DA, NE, and 5-HT in the investigated brain regions. On a behavioral level, animals showed improvement in their locomotion activity. These findings have shed more light on some mechanisms underlying the treatment potential of PBM and displayed the safety, easiness, and efficacy of PBM treatment as an alternative to pharmacological treatment for PD.


Assuntos
Terapia com Luz de Baixa Intensidade , Transtornos Parkinsonianos , Ratos , Masculino , Animais , Reserpina/farmacologia , Ratos Wistar , Serotonina , Acetilcolinesterase , Mesencéfalo , Dopamina , Adenosina Trifosfatases , Modelos Animais de Doenças
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3017-3031, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37306714

RESUMO

The present work investigated the effect of α-lipoic acid (ALA) and caffeine-loaded chitosan nanoparticles (CAF-CS NPs) on obesity and its hepatic and renal complications in rats. Rats were divided into control, rat model of obesity induced by high fat diet (HFD), and obese rats treated with ALA and/or CAF-CS NPs. At the end of the experiment, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and the levels of urea, creatinine, interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were determined in the sera of animals. In addition, malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were measured in hepatic and renal tissues. Renal Na+, K+-ATPase was assessed. The histopathological changes were examined in the hepatic and renal tissues. Obese rats showed a significant increase in AST, ALT, ALP, urea, and creatinine. This was associated with a significant increase in IL-1ß, TNF-α, MDA, and NO. A significant decrease in hepatic and renal GSH and renal Na+, K+-ATPase activity was recorded in obese rats. Obese rats also showed histopathological alterations in hepatic and renal tissues. Treatment with ALA and/or CAF-CS NPs reduced the weight of obese rats and ameliorated almost all the hepatic and renal biochemical and histopathological changes induced in obese rats. In conclusion, the present findings indicate that ALA and/or CAF-CS NPs offered an effective therapy against obesity induced by HFD and its hepatic and renal complications. The therapeutic effect of ALA and CAF-CS NPs could be mediated through their antioxidant and anti-inflammatory properties.


Assuntos
Quitosana , Nanopartículas , Ácido Tióctico , Ratos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Cafeína/farmacologia , Quitosana/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/metabolismo , Estresse Oxidativo , Ratos Wistar , Fígado , Antioxidantes/uso terapêutico , Rim , Ureia/farmacologia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo
5.
Stem Cells Int ; 2023: 2690949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274020

RESUMO

Alzheimer's disease (AD) is the most frequent cause of age-related neurodegeneration and ensuing cognitive impairment. Progressive deposition of extracellular amyloid beta (Aß) aggregates (plaques) and intracellular hyperphosphorylated Tau protein (p-Tau) are the core pathological markers of AD but may precede clinical symptoms by many years, presenting a therapeutic window of opportunity. Females are more frequently afflicted by AD than males, necessitating evaluation of novel treatments for the female population. The current study examined the protective efficacies of intravenous bone marrow-derived mesenchymal stem cells (BM-MSCs) and oral gamma-secretase inhibitor-953 (GSI-953) during pregnancy on cognitive impairment in rat dams and neurodegeneration in offspring induced by intracerebroventricular injection of Aß25-35 prior to pregnancy. The Aß25-35 (AD) group exhibited significant (P < 0.001) impairments in the Y-maze and novel object recognition test performance prior to conception. Histological analysis of the offspring cortex revealed substantial dendritic shrinkage and activation of microglial cells, while neurochemical analysis demonstrated significant increases in the proinflammatory cytokine interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). In contrast, BM-MSC or GSI-953 treatment of dams following Aß25-35 injection significantly (P < 0.001) reduced the number and size of activated microglial cells, markedly increased dendrite length, and reversed proinflammatory cytokine elevations in offspring. Moreover, BM-MSC or GSI-953 treatment reversed the Aß25-35-induced amyloid precursor protein and p-Tau elevations in the offspring brain; these changes were accompanied by upregulation of the brain-derived neurotrophic factor and downregulation of glycogen synthase kinase-3ß in the serum and brain. Treatment with BM-MSCs or GSI-953 also reversed Aß25-35-induced elevations in different gene expressions in the neonatal cortex. Finally, treatment of dams with BM-MSCs or GSI-953 prevented the Aß25-35-induced disruption of newborn brain development. Thus, BM-MSC and GSI-953 treatments have broad-spectrum effects against Aß25-35-induced brain pathology, including the suppression of neural inflammation, restoration of developmental plasticity, and promotion of neurotrophic signaling.

6.
Neurochem Res ; 48(5): 1320-1333, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36449200

RESUMO

Boldenone and tramadol are abused among large sectors of adolescents. Therefore, the behavioral changes concerned with memory and cognitive functions and neurochemical variations were investigated in the cortex of rats treated with boldenone and/or tramadol. Rats were divided into control and rats treated with boldenone, tramadol, or both drugs. At the end of the treatment period, the memory and cognitive functions were evaluated by the Y-maze test (YMT) and elevated plus maze test (EPMT) and the motor activity was determined by the open field test (OFT). The cortex was dissected to carry out the neurochemical analyses. Rats treated with boldenone and/or tramadol showed impaired memory and cognitive functions and reduced motor activity. A significant increase in lipid peroxidation (MDA), nitric oxide (NO), and a significant decrease in reduced glutathione (GSH) were observed in the cortex of rats treated with boldenone and/or tramadol. The levels of acetylcholinesterase (AChE) and monoamine oxidase (MAO) decreased significantly. Western blot data showed a significant decrease in Bcl2 and a significant increase in caspase-3 and inducible nitric oxide synthase (iNOS) in rats treated with boldenone and/or tramadol. These changes were associated with neuronal death as indicated from the histopathological examination.The present findings indicate that boldenone and/or tramadol induced impairment in memory and cognitive functions. These changes could be mediated by the increase in oxidative stress, neuroinflammation, reduced AChE level, and reduced number of survived neurons in the cortex as indicated from the decreased Bcl2 level and the histological examination.


Assuntos
Tramadol , Ratos , Masculino , Animais , Tramadol/toxicidade , Acetilcolinesterase/metabolismo , Testosterona , Proteínas Proto-Oncogênicas c-bcl-2 , Estresse Oxidativo
7.
Neuroendocrinology ; 112(11): 1129-1142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354137

RESUMO

OBJECTIVE: The present study evaluates the neuroprotective effect of α-lipoic acid (ALA) and/or metformin (MET) on the behavioral and neurochemical changes induced by hypothyroidism. METHODS: Rats were divided into control, rat model of hypothyroidism induced by propylthiouracil, and rat model of hypothyroidism treated with ALA, MET, or their combination. RESULTS: Behaviorally, hypothyroid rats revealed impaired memory and reduced motor activity as indicated from the novel object recognition test and open-field test, respectively. Hypothyroidism induced a significant increase in lipid peroxidation (malondialdehyde [MDA]) and a significant decrease in reduced glutathione (GSH) and nitric oxide (NO) in the cortex and hippocampus. These were associated with a significant increase in tumor necrosis factor-α (TNF-α) and a significant decrease in brain-derived neurotrophic factor (BDNF). Hypothyroidism decreased significantly the levels of serotonin (5-HT), norepinephrine (NE), and dopamine (DA) and reduced the activities of acetylcholinesterase (AchE) and Na+, K+-ATPase in the cortex and hippocampus. Treatment of hypothyroid rats with ALA and/or MET showed an improvement in memory function and motor activity. Moreover, ALA and/or MET prevented the increase in MDA and TNF-α, and the decline in GSH, NO, BDNF, 5-HT, NE, and DA. It also restored AchE and Na+, K+-ATPase activities in the studied brain regions. CONCLUSION: ALA and/or MET has a potential neuroprotective effect against the adverse behavioral and neurochemical changes induced by hypothyroidism in rats.


Assuntos
Hipotireoidismo , Metformina , Fármacos Neuroprotetores , Ácido Tióctico , Animais , Ratos , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase , Serotonina , Fator de Necrose Tumoral alfa , Dopamina , Propiltiouracila , Metformina/farmacologia , Metformina/uso terapêutico , Óxido Nítrico , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Glutationa , Malondialdeído , Norepinefrina , Adenosina Trifosfatases
8.
Metab Brain Dis ; 37(2): 343-357, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048324

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that afflicts millions of people all over the world. Intracerebroventricular (ICV) injection of a sub-diabetogenic dose of streptozotocin (STZ) was established as an experimental animal model of AD. The present study was conducted to evaluate the efficacy of curcumin nanoparticles (CNs) against the behavioral, neurochemical and histopathological alterations induced by ICV-STZ. The animals were divided into: control animals, the animal model of AD that received a single bilateral ICV microinjection of STZ, and the animals protected by a daily oral administration of CNs for 6 days before the ICV-STZ injection. The animals of all groups were subjected to surgical operation on the 7th day of administration. Then the administration of distilled water or CNs was continued for 8 days. The ICV-STZ microinjection produced cognitive impairment as evident from the behavioral Morris water maze (MWM) test and induced oxidative stress in the cortex and hippocampus as indicated by the significant increases in lipid peroxidation and nitric oxide (NO) levels and the significant decrease in reduced glutathione (GSH) levels. It also produced a significant increase in acetylcholinesterase (AChE) and tumor necrosis-alpha (TNF-ɑ) and a significant decrease in Na+,K + -ATPase. In addition, a significant increase in amino acid neurotransmitters occurred in the hippocampus, whereas a significant decrease was obtained in the cortex of STZ-induced AD rats. CNs ameliorated the behavioral, immunohistochemical and most of the neurochemical alterations induced by STZ in the hippocampus and cortex. It may be concluded that CNs might be considered as a promising therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Curcumina , Nanopartículas , Doenças Neurodegenerativas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Modelos Animais de Doenças , Humanos , Masculino , Aprendizagem em Labirinto , Estresse Oxidativo , Ratos , Ratos Wistar , Estreptozocina/toxicidade
9.
Eur J Pharmacol ; 908: 174384, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324858

RESUMO

The antidepressant effect of curcumin-coated iron oxide nanoparticles (Cur-IONPs) was investigated in the current study using depression rat model induced by reserpine. IONPs were synthesized by curcumin as a reducing agent producing Cur-IONPs. Rats were divided into control, depression rat model, and depressed rats treated with Cur-IONPs. After treatment rat behavior was evaluated using forced swimming test (FST). Serotonin (5-HT), norepinephrine (NE), dopamine (DA), monoamine oxidase (MAO), acetylcholinesterase (AchE), Na+, K+, ATPase, lipid peroxidation (MDA), reduced glutathione (GSH), glutathione-s-transferase (GST) and nitric oxide (NO) were measured in the cortex and hippocampus. In depressed rats, FST showed increased immobilization time and reduced swimming time. This was associated with a significant decrease in 5-HT, NE, DA and GSH and a significant increase in MDA and NO levels and GST, MAO, AchE and Na+, K+, ATPase activities in the cortex and hippocampus. Treatment with Cur-NONPs for two weeks increased the swimming time reduced the immobility time, and elevated 5-HT, NE and DA levels. Cur-IONPs attenuated the oxidative stress induced by reserpine and restored the MAO, AchE and Na+, K+, ATPase. The present green method used curcumin in the IONPs synthesis and has several merits; obtaining nanoform of iron oxide, increasing the bioavailability of curcumin and reducing the oxidative stress induced by iron. The present antidepressant effect of Cur-IONPs could be attributed to the ability of Cur-IONPs to restore monoamine neurotransmitter levels by increasing their synthesis and reducing their metabolism. In addition, the antioxidant activity of curcumin prevented oxidative stress in the depressed rats.


Assuntos
Acetilcolinesterase , Curcumina , Animais , Antidepressivos , Depressão , Peroxidação de Lipídeos , Ratos
10.
Neurotoxicology ; 85: 1-9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882267

RESUMO

Cognitive impairment is one of the serious side effects that cancer-treated patients suffer from after treatment by doxorubicin (DOX). Investigating the mechanisms underlying this impairment is crucial for its treatment or prevention. The current study investigates the cortical and hippocampal neurochemical changes induced by an acute dose of DOX (20 mg/kg, i.p.) and evaluates the neuroprotective effect of nanocurcumin (NC) (50 mg/kg, p.o.) against these changes. Animals were randomly divided into four groups, control, rats treated with either NC or DOX, and the fourth group treated with NC prior to DOX. Cortical dopamine level has significantly increased (71.88 %) after DOX injection. This was associated with a significant rise in the levels of lipid peroxidation (183.99 %, 201.4 %) and nitric oxide (36.54 %, 55 %) and a significant reduction in reduced glutathione (13 %, 21.44 %) in the cortex and hippocampus, respectively. In addition, DOX inhibited the cortical and hippocampal activities of acetylcholinesterase (94.82 %, 62.75 %) and monoamine oxidase (64.40 %, 68.84 %), respectively. Protection with NC mitigates the changes induced in the oxidative stress parameters by DOX. However, the effect on the activities of AchE and MAO was insignificant. This was reflected in the level of dopamine that showed non-significant changes in comparison to control and DOX-treated rats. The present findings indicate that oxidative stress, inhibition in AchE, MAO, and the subsequent elevation in dopamine could have a crucial role in mediating the chemo-brain adverse effects induced by DOX. In addition, protection with NC mitigated some of these adverse effects thus rendering DOX more tolerable.


Assuntos
Encéfalo/efeitos dos fármacos , Curcumina/administração & dosagem , Doxorrubicina/toxicidade , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antibióticos Antineoplásicos/toxicidade , Encéfalo/metabolismo , Dopamina/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
11.
Iran J Basic Med Sci ; 24(1): 85-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33643575

RESUMO

OBJECTIVES: The present study aims to investigate the pathological mechanisms mediating the effect of paradoxical sleep deprivation (PSD) for 48 hr on the spontaneous recurrent seizures (SRS) stage of the pilocarpine rat model of temporal lobe epilepsy. MATERIALS AND METHODS: This was carried out through assessment of amino acid neurotransmitter levels, the main oxidative stress parameters, and the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in the hippocampus. The experimental animals were divided into 4 groups: control, epileptic, PSD, and epileptic+PSD groups. RESULTS: Data indicated that PSD in epileptic rats induced a significant decrease in GSH levels. TNF-α increased significantly in the PSD group and decreased significantly in both epileptic rats and epileptic rats deprived of paradoxical sleep. PSD induced a significant increase in glutamine, glutamate, and aspartate and a significant decrease in GABA. In epileptic rats and epileptic rats deprived of PS, a significant increase in aspartate and a significant decrease in GABA and taurine were recorded. CONCLUSION: The present data suggest that exposure to PSD for 48 hr did not worsen the alterations produced in the present epileptic model. However, epileptic, PSD, epileptic + PSD groups showed a state of hyperexcitability and oxidative stress. PSD may increase the susceptibility of animals to the development of epilepsy.

12.
Cardiovasc Toxicol ; 21(6): 433-443, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548025

RESUMO

The cardiotoxicity of chemotherapeutic drugs as cisplatin has become a major issue in recent years. The present study investigates the efficacy of curcumin nanoparticles against the cardiotoxic effects of cisplatin by assessment of oxidative stress parameters, Na+,K+-ATPase, acetylcholinesterase (AchE) and tumor necrosis factor-alpha (TNF-α) in cardiac tissue in addition to serum lactate dehydrogenase (LDH). Rats were divided into three groups: control rats that received saline for 14 days; cisplatin-treated rats that received a single intraperitoneal (i.p.) injection of cisplatin (12 mg/kg) followed by a daily oral administration of saline (0.9%) for 14 days and rats treated with a single i.p. injection of cisplatin (12 mg/kg) followed by a daily oral administration of curcumin nanoparticles (50 mg/kg) for 14 days. Cisplatin resulted in a significant increase in lipid peroxidation, nitric oxide (NO), and TNF-α and a significant decrease in reduced glutathione (GSH) levels and Na+, K+- ATPase activity. Moreover, significant increases in cardiac AchE and serum lactate dehydrogenase activities were recorded. Treatment of cisplatin-injected animals with curcumin nanoparticles ameliorated all the alterations induced by cisplatin in the heart of rats. This suggests that curcumin nanoparticles can be used as an important therapeutic adjuvant in chemotherapeutic and other toxicities mediated by oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Curcumina/farmacologia , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas , Acetilcolinesterase/metabolismo , Animais , Cisplatino , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Diet Suppl ; 18(1): 72-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31958022

RESUMO

The current aim is to evaluate the effect of ashwagandha root extract (AE) on the neurochemical changes induced in the cortex and hippocampus as a consequence of thyroid dysfunction induced by propylthiouracil (PTU). Male Wistar rats were divided into; control, AE treated rats, rat model of hypothyroidism and rat model of hypothyroidism treated with either AE or L-thyroxine (T4) for 1 month. Rat model of hypothyroidism showed a significant decrease in serum levels of tri-iodothyronine (T3) and T4 and a significant increase in cortical and hippocampal lipid peroxidation (MDA), nitric oxide (NO), superoxide dismutase (SOD) and catalase (CAT). However, reduced glutathione (GSH) decreased significantly. This was associated with a significant increase in hippocampal tumor necrosis factor-α (TNF-α) and cortical dopamine levels. Both L-thyroxine and AE restored T3 and T4 levels. In the hippocampus L-Thyroxine prevented the increase in MDA and restored GSH but failed to restore the increased NO and TNF-α. In the cortex L-thyroxine didn't change the increased MDA and NO and the decreased GSH induced by PTU. L-thyroxine increased cortical and hippocampal SOD and CAT. AE prevented the increased hippocampal MDA, NO and TNF-α and the decreased GSH level induced by PTU. In the cortex AE failed to restore MDA and NO but prevented the decrease in GSH. The increase in cortical dopamine level induced by PTU was ameliorated by L-thyroxine and improved by AE. The present data indicate that AE could prevent thyroid dysfunction and reduce its complications on the nervous system including oxidative stress and neuroinflammation.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Hipotireoidismo , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Modelos Animais de Doenças , Hipotireoidismo/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Raízes de Plantas , Ratos , Ratos Wistar
14.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165665, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918005

RESUMO

The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.


Assuntos
Cardiotônicos/administração & dosagem , Cardiotoxicidade/prevenção & controle , Curcumina/administração & dosagem , Doxorrubicina/toxicidade , Coração/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Dopamina/análise , Dopamina/metabolismo , Eletrocardiografia , Proteínas Ligadas por GPI/metabolismo , Glutationa/análise , Glutationa/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Nanopartículas/administração & dosagem , Norepinefrina/análise , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Serotonina/análise , Serotonina/metabolismo
15.
Nutr Neurosci ; 22(11): 789-796, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29514562

RESUMO

Objective: The present study aims to investigate the neuroprotective effect of caffeine against aluminum chloride (AlCl3)-induced neurotoxicity in rats. Methods: Twenty-one male albino rats were divided into 3 groups: control, AlCl3-intoxicated group that received daily oral administration of AlCl3 (100 mg/kg for 30 days) and protected group injected daily with caffeine (20 mg/kg intraperitoneally) one hour before oral administration of AlCl3 for 30 days. Levels of lipid peroxidation, reduced glutathione, and nitric oxide and the activities of acetylcholinesterase (AchE) and Na+/K+-ATPase were measured spectrophotometrically. Tumor necrosis factor-α (TNF-α) was evaluated by ELISA kit. Results: The data revealed evidence of oxidative and nitrosative stress in the cerebral cortex, hippocampus, and striatum of AlCl3-intoxicated rats. This was indicated from the increased levels of lipid peroxidation and nitric oxide together with the decreased level of reduced glutathione. Moreover, the daily AlCl3 administration increased AchE and Na+/K+-ATPase activities and the level of TNF-α in the selected brain regions. Protection with caffeine ameliorated the oxidative stress induced by AlCl3 in the cerebral cortex, hippocampus, and striatum. In addition, caffeine restored the elevated level of TNF-α in the hippocampus and striatum. This was accompanied by an improvement in the activities of AchE and Na+/K+-ATPase in the studied brain regions. Discussion and conclusions: The present findings clearly indicate that caffeine provides a significant neuroprotection against AlCl3-induced neurotoxicity mediated by its antioxidant, anti-inflammatory, and anticholinesterase properties.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Cafeína/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Síndromes Neurotóxicas/tratamento farmacológico , Cloreto de Alumínio/toxicidade , Animais , Encéfalo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
16.
Drug Chem Toxicol ; 42(2): 194-202, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30257586

RESUMO

The present study is conducted to evaluate the neuroprotective effect of curcumin nanoparticles (CUR NP) against the neurotoxicity induced by cisplatin (CP) in rat. Rats were divided into control group that received saline solution, CP-treated rats that received a single i.p. injection of CP (12 mg/kg body wt), and CP-treated rats that received a single i.p injection of CP (12 mg/kg body wt) followed by a daily oral administration of CUR NP (50 mg/kg body wt) for 14 days. At the end of the experiment, the motor activity of rats was evaluated by open field test. The neurochemical and histopathological changes were investigated in the cerebral cortex. A significant decrease in motor activity was observed in CP-treated rats. This was associated with a significant increase in the cortical levels of lipid peroxidation, nitric oxide, tumor necrosis factor-α, caspase-3, and acetylcholinesterase activity. However, CP induced a significant decrease in reduced glutathione levels and Na+, K+-ATPase activity. In rats treated with CP and CUR NP, no significant changes were recorded in the parameters of the open field test as compared to control. In addition, treatment with CUR NP prevented all the neurochemical changes induced by CP except the increased value of nitric oxide. CUR NP also reduced the histopathological changes induced by CP. It is clear from the present data that CUR NP could ameliorate the neurotoxic effect induced by cisplatin.


Assuntos
Encéfalo/efeitos dos fármacos , Cisplatino/toxicidade , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Curcumina/administração & dosagem , Glutationa/análise , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico/análise , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/análise
17.
Toxicol Ind Health ; 34(12): 860-872, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345898

RESUMO

The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.


Assuntos
Aminoácidos/efeitos da radiação , Encéfalo/efeitos da radiação , Radiação Eletromagnética , Neurotransmissores/efeitos da radiação , Fatores Etários , Animais , Telefone Celular , Cromatografia Líquida de Alta Pressão , Campos Eletromagnéticos/efeitos adversos , Masculino , Ratos , Ratos Wistar
18.
J Diet Suppl ; 14(5): 553-572, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301304

RESUMO

The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na+/K+-ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na+/K+-ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Glutationa/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Ratos , Rotenona , Fator de Necrose Tumoral alfa , Desacopladores
19.
Behav Brain Res ; 324: 41-50, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212939

RESUMO

Cannabis sativa is one of the most widely recreational drugs and its use is more prevalent among depressed patients. Some studies reported that Cannabis has antidepressant effects while others showed increased depressive symptoms in Cannabis users. Therefore, the present study aims to investigate the effect of Cannabis extract on the depressive-like rats. Twenty four rats were divided into: control, rat model of depression induced by reserpine and depressive-like rats treated with Cannabis sativa extract (10mg/kg expressed as Δ9-tetrahydrocannabinol). The depressive-like rats showed a severe decrease in motor activity as assessed by open field test (OFT). This was accompanied by a decrease in monoamine levels and a significant increase in acetylcholinesterase activity in the cortex and hippocampus. Na+,K+-ATPase activity increased in the cortex and decreased in the hippocampus of rat model. In addition, a state of oxidative stress was evident in the two brain regions. This was indicated from the significant increase in the levels of lipid peroxidation and nitric oxide. No signs of improvement were observed in the behavioral and neurochemical analyses in the depressive-like rats treated with Cannabis extract. Furthermore, Cannabis extract exacerbated the lipid peroxidation in the cortex and hippocampus. According to the present findings, it could be concluded that Cannabis sativa aggravates the motor deficits and neurochemical changes induced in the cortex and hippocampus of rat model of depression. Therefore, the obtained results could explain the reported increase in the depressive symptoms and memory impairment among Cannabis users.


Assuntos
Cannabis/efeitos adversos , Depressão/induzido quimicamente , Dronabinol/administração & dosagem , Acetilcolinesterase/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Depressão/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Atividade Motora , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Reserpina , Serotonina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Gen Physiol Biophys ; 36(1): 99-108, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27901474

RESUMO

The aim of the present work was to investigate the neurochemical changes induced in the cerebellum of rat model of Parkinson's disease (PD). Rats were divided into two groups; control and rat model of PD induced by the intrastriatal injection of rotenone. As compared to control, a significant increase in the excitatory amino acid neurotransmitters; glutamate and aspartate together with a significant decrease in the inhibitory amino acids, GABA, glycine and taurine were observed in the cerebellum of rat model of PD. This was associated with a significant increase in lipid peroxidation, nitric oxide and tumor necrosis factor-α and a significant decrease in reduced glutathione. A significant decrease in acetylcholinesterase and a significant increase in Na+,K+-ATPase were recorded in the cerebellum of rat model of PD. In addition the cerebellar sections from rat model of PD showed marked necrosis of Purkinje cells, irregular damaged cells, cytoplasmic shrinkage, necrosis and perineuronal vacuolation. The present results indicate that the disturbance in the balance between the excitatory and inhibitory amino acids may have a role in the pathogenesis of PD. According to the present neurochemical and histopathological changes, the cerebellum should be taken into consideration during the treatment of PD.


Assuntos
Cerebelo/metabolismo , Cerebelo/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Rotenona/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA