Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 19(12): e3001474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879065

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura , Ubiquitinação
2.
J Biomol NMR ; 74(4-5): 223-228, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32333192

RESUMO

Recent methyl adiabatic relaxation dispersion experiments provide examination of conformational dynamics across a very wide timescale (102-105 s-1) and, particularly, provide insight into the hydrophobic core of proteins and allosteric effects associated with modulators. The experiments require efficient decoupling of 1H and 13C spin interactions, and some artifacts have been discovered, which are associated with the design of the proton decoupling scheme. The experimental data suggest that the original design is valid; however, pulse sequences with either no proton decoupling or proton decoupling with imperfect pulses can potentially exhibit complications in the experiments. Here, we demonstrate that pulse imperfections in the proton decoupling scheme can be dramatically alleviated by using a single composite π pulse and provide pure single-exponential relaxation data. It allows the opportunity to access high-quality methyl adiabatic relaxation dispersion data by removing the cross-correlation between dipole-dipole interaction and chemical shift anisotropy. The resulting high-quality data is illustrated with the binding of an allosteric modulator (G2BR) to the ubiquitin conjugating enzyme Ube2g2.


Assuntos
Artefatos , Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Conformação Proteica , Receptores do Fator Autócrino de Motilidade/química , Enzimas de Conjugação de Ubiquitina/química , Regulação Alostérica , Sítios de Ligação , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Dobramento de Proteína , Prótons , Receptores do Fator Autócrino de Motilidade/genética , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
J Biol Chem ; 295(9): 2664-2675, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31974162

RESUMO

Engineering and bioconjugation of proteins is a critically valuable tool that can facilitate a wide range of biophysical and structural studies. The ability to orthogonally tag or label a domain within a multidomain protein may be complicated by undesirable side reactions to noninvolved domains. Furthermore, the advantages of segmental (or domain-specific) isotopic labeling for NMR, or deuteration for neutron scattering or diffraction, can be realized by an efficient ligation procedure. Common methods-expressed protein ligation, protein trans-splicing, and native chemical ligation-each have specific limitations. Here, we evaluated the use of different variants of Staphylococcus aureus sortase A for a range of ligation reactions and demonstrate that conditions can readily be optimized to yield high efficiency (i.e. completeness of ligation), ease of purification, and functionality in detergents. These properties may enable joining of single domains into multidomain proteins, lipidation to mimic posttranslational modifications, and formation of cyclic proteins to aid in the development of nanodisc membrane mimetics. We anticipate that the method for ligating separate domains into a single functional multidomain protein reported here may enable many applications in structural biology.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Engenharia de Proteínas/métodos , Staphylococcus aureus/enzimologia , Domínios Proteicos
4.
Biochim Biophys Acta ; 1860(1 Pt B): 325-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459004

RESUMO

BACKGROUND: The objective of this study was to determine whether the cataract-related G18V variant of human γS-crystallin has increased exposure of hydrophobic residues that could explain its aggregation propensity and/or recognition by αB-crystallin. METHODS: We used an ANS fluorescence assay and NMR chemical shift perturbation to experimentally probe exposed hydrophobic surfaces. These results were compared to flexible docking simulations of ANS molecules to the proteins, starting with the solution-state NMR structures of γS-WT and γS-G18V. RESULTS: γS-G18V exhibits increased ANS fluorescence, suggesting increased exposed hydrophobic surface area. The specific residues involved in ANS binding were mapped by NMR chemical shift perturbation assays, revealing ANS binding sites in γS-G18V that are not present in γS-WT. Molecular docking predicts three binding sites that are specific to γS-G18V corresponding to the exposure of a hydrophobic cavity located at the interdomain interface, as well as two hydrophobic patches near a disordered loop containing solvent-exposed cysteines, all but one of which is buried in γS-WT. CONCLUSIONS: Although both proteins display non-specific binding, more residues are involved in ANS binding to γS-G18V, and the affected residues are localized in the N-terminal domain and the nearby interdomain interface, proximal to the mutation site. GENERAL SIGNIFICANCE: Characterization of changes in exposed hydrophobic surface area between wild-type and variant proteins can help elucidate the mechanisms of aggregation propensity and chaperone recognition, presented here in the context of cataract formation. Experimental data and simulations provide complementary views of the interactions between proteins and the small molecule probes commonly used to study aggregation. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Catarata/metabolismo , Simulação de Acoplamento Molecular , Multimerização Proteica , gama-Cristalinas/química , gama-Cristalinas/ultraestrutura , Sítios de Ligação , Catarata/genética , Variação Genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Conformação Proteica , Propriedades de Superfície , gama-Cristalinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA