Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chonnam Med J ; 59(1): 48-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36794239

RESUMO

Some reports emphasize that zinc oxide nanoparticles (ZnO NPs) are detrimental to the reproductive organs of animals. As such, this research aimed at exploring the apoptotic potential of ZnO NPs on testis along with the beneficial role of Vitamins (V) A, C, and E against ZnO NP-induced damage. To this aim, a population of 54 healthy, male Wistar rats were used in this work and then assigned into nine groups of 6 rats as G1: Control 1 (Water); G2: Control 2 (Olive oil); G3: VA (1000 IU/kg), G4: VC (200 mg/kg), G5: VE (100 IU/kg), G6: ZnO NPs exposed animals (200 mg/kg); and G7, 8 and 9: ZnO NPs-exposed animals that were pre-treated with either VA, C, or E. Apoptosis rates were estimated by measuring the level of apoptotic regulatory markers including Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) using western blotting and qRT-PCR assays. The data indicated that ZnO NPs exposure elevates the level of Bax protein and gene expression, whereas the protein and gene expression of Bcl-2 was reduced. Further, the activation of caspase-3,7 occurred after exposure to ZnO NPs, while the above alterations were significantly alleviated in the rats that were co-treated with VA, C, or E and ZnO NPs relative to the rats in the ZnO NPs group. In summary, VA, C, and E exerted anti-apoptotic functions in the testis of rats following administration of ZnO NPs.

2.
Biol Trace Elem Res ; 201(3): 1252-1260, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364806

RESUMO

Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.


Assuntos
Nanopartículas , Óxido de Zinco , Adulto , Ratos , Masculino , Humanos , Animais , Óxido de Zinco/toxicidade , Vitaminas/farmacologia , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Apoptose , Nanopartículas/toxicidade , Vitamina A/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Vitamina K/farmacologia , RNA Mensageiro/metabolismo , Estresse Oxidativo
3.
Int J Inflam ; 2022: 7179766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588784

RESUMO

Objective: Pulmonary toxicity induced by CCl4, a model of idiopathic pulmonary fibrosis (IPF), leads to tissue remodeling and inflammation. Human umbilical cord mesenchymal cell-conditioned medium (hMSC-CM) is a potent anti-inflammatory, antioxidative, and antifibrotic agent. Methods: Forty male Wistar rats were assigned to the control (C), olive oil control (C.O) (hMSC-CM), control (C.Ms), fibrosis (fb), and fibrosis with hMSC-CM (f.Ms) treatment groups. The groups C, C.O, and C.Ms received PBS (200 µl), olive oil (1 ml/kg), and hMSC-CM (100 µg protein/kg), respectively. The fibrosis group was administered with only CCl4 (1 ml/kg). The last group, f.Ms was treated with CCl4 (1 ml/kg) and 100 µg protein/kg IV hMSC-CM. While the treatment with olive oil and CCl4 was performed for 2 days/week from the first week for 12 weeks, the treatment with PBS and hMSC-CM was carried out 2 days/week from week 4th to week 12th. The effect of the UC-MSC culture medium treatment on the lung was evaluated by assessing lysyl oxidase (LOX), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß1 (TGF-ß1) genes, and proteins expression by real-time RCR and western blotting, respectively. Results: Lysyl oxidase (LOX), tumor necrosis factor-alpha (TNF-α), transforming growth factor-b1 (TGF-ß1), malondialdehyde (MDA), and oxidative stress levels were markedly higher in the fibrosis group than in the control groups (p ≤ 0.001). Additionally, glutathione (GSH) in the fibrosis group was markedly lower than those in the control groups (p ≤ 0.001). Fibrosis in the UC-MSC treatment group had milder histopathological injuries than in the fibrosis group. Conclusion: hMSC-MSC as a strong anti-inflammatory, antioxidative, and antifibrotic decreases the level of oxidative stress, proinflammatory cytokines, and MDA causing a restoring effect against CCl4-induced pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA