Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 109: 108031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382408

RESUMO

The exploration encompassed the synthesis and characterization of two innovative complexes, namely FePHNS and CuPHNS, employing a diverse array of analytical techniques such as elemental analysis, infrared and ultraviolet-visible spectroscopy, mass spectrometry, molar conductivity measurements, magnetic susceptibility assessments, and thermal analysis (TGA). In the spectral domain, infrared spectroscopy substantiated the tridentate ONS coordination of the PHNS ligand to the central metal atom. Thermal analysis offered valuable insights into the distribution and content of water molecules within the complexes. Density functional theory (DFT) calculations were harnessed to validate the molecular structures of both the PHNS ligand and its complex entities, providing an intricate comprehension of their quantum chemical parameters. The investigation extended to an evaluation of the in vitro antibacterial, antifungal, and antioxidant efficacy of the PHNS ligand and its complexes, revealing heightened biological activities for the complexes in comparison to the free PHNS ligand, notably with the CuPHNS complex demonstrating the highest activity, while the PHNS ligand exhibited the lowest. To delve into potential physiological activities, molecular docking studies were conducted, predicting the binding affinity of the compounds to proteins 2vf5 (Glucosamine-6-phosphate synthase in complex with glucosamine-6-phosphate) from Escherichia coli, 3cku (rate oxidase from Aspergillus flavus complexed with its inhibitor 8-azaxanthin and chloride) from Aspergillus flavus, and 5IJT (Crystal structure of Human Peroxiredoxin 2 Oxidized). The ensuing analysis of protein-ligand interactions and binding energies underscored the promising physiological activities of the investigated compounds, warranting further exploration for their potential in novel drug development.

2.
Int J Biol Macromol ; 262(Pt 2): 130085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346613

RESUMO

Biofilm formation on the inner surfaces of pipes poses significant threats to water distribution systems, increasing maintenance costs and public health risks. To address this immense issue, we synthesized a nanogel formulation comprising acacia gum (AG) and chitosan (Cs), loaded with varying concentrations of silver nanoparticles (AgNPs), for using as an antimicrobial coating material. AgNPs were synthesized using AG as a reducing and stabilizing agent, exhibiting absorbance at 414 nm. The preparation of AgNPs was proved using TEM. Bactericidal efficacy was assessed against E. coli, Klebsiella pneumoniae, Enterococcus faecalis, and Bacillus subtilis. Using the dipping coating method, two pipe materials (polypropylene (PP) and ductile iron (DI)) were successfully coated. Notably, AgNPs2@AGCsNG nanogel exhibited potent antibacterial action against a wide range of pathogenic bacteria. Toxicity tests confirmed nanogel safety, suggesting broad applications. High EC50% values underscored their non-toxic nature. This research proposes an effective strategy for biofilm prevention in water systems, offering excellent antibacterial properties and biocompatibility. AG and Cs nanogels loaded with AgNPs promise to enhance water quality, reduce maintenance prices, and protect human public health in water distribution networks.


Assuntos
Quitosana , Nanopartículas Metálicas , Polietilenoglicóis , Polietilenoimina , Humanos , Prata/farmacologia , Nanogéis , Goma Arábica , Quitosana/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 13(1): 9058, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270645

RESUMO

Two organoselenium thiourea derivatives, 1-(4-(methylselanyl)phenyl)-3-phenylthiourea (DS036) and 1-(4-(benzylselanyl)phenyl)-3-phenylthiourea (DS038) were produced and categorized using FTIR and NMR (1H and 13C). The effectiveness of the above two compounds as C-steel corrosion inhibitors in molar HCl was evaluated using the potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS) techniques. PD findings indicate that DS036 and DS038 have mixed-type features. EIS results show that growing their dose not only changes the polarization resistance of C-steel from 18.53 to 363.64 and 463.15 Ω cm2 but also alters the double layer capacitance from 710.9 to 49.7 and 20.5 µF cm-2 in the occurrence of 1.0 mM of DS036 and DS038, respectively. At a 1.0 mM dose, the organoselenium thiourea derivatives displayed the highest inhibition efficiency of 96.65% and 98.54%. The inhibitory molecule adsorption proceeded along the Langmuir isotherm on the steel substrate. The adsorption-free energy of the adsorption process was also intended and indicated a combined chemical and physical adsorption on the C-steel interface. FE-SEM studies support the adsorption and protective abilities of the OSe-based molecule inhibitor systems. In Silico calculations (DFT and MC simulations) explored the attraction between the studied organoselenium thiourea derivatives and corrosive solution anions on a Fe (110) surface. The obtained results show that these compounds can make a suitable preventing surface and control the corrosion rate.

4.
ACS Omega ; 8(12): 11512-11535, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008130

RESUMO

In this work, three different derivatives of Schiff base, as mono- and di-Schiff bases, were successfully synthesized by the facile condensation of 2-aminopyridine, o-phenylenediamine, or 4-chloro-o-phenylenediamine with sodium salicylaldehyde-5-sulfonate (H1, H2, and H3, respectively). A combination of theoretical and practical studies was accomplished on the corrosion mitigation effect of the prepared Schiff base derivatives on C1018 steel in CO2-saturated 3.5% NaCl solution. The corrosion inhibition effect of the synthesized Schiff base molecules was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. The outcomes exhibited that Schiff base derivatives have an outstanding corrosion inhibition effect on carbon steel at particularly low concentrations in sweet conditions. The outcomes showed that Schiff base derivatives exhibited a satisfactory inhibition efficiency of 96.5% (H1), 97.7% (H2), and 98.1% (H3) with a dosage of 0.5 mM at 323 K. SEM/EDX analysis confirms the adsorbed inhibitor film's formation on the metal surface. The polarization plots indicate that the studied compounds behaved as inhibitors of the mixed type according to the isotherm model of Langmuir. The computational inspections (MD simulations and DFT calculations) display a good correlation with the investigational findings. The outcomes could be applied to assess the efficiency of the inhibiting agents in the gas and oil industry.

5.
Antioxidants (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829772

RESUMO

During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.

6.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677536

RESUMO

A new series of Schiff-benzimidazole hybrids 3a-o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Benzimidazóis/química , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Bases de Schiff/farmacologia , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
7.
Polymers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501590

RESUMO

The development of scaffold-based nanofilms for the acceleration of wound healing and for maintaining the high level of the healthcare system is still a challenge. The use of naturally sourced polymers as binders to deliver nanoparticles to sites of injury has been highly suggested. To this end, chitosan (CS) was embedded with different nanoparticles and examined for its potential usage in wound dressing. In detail, chitosan (CS)-containing zinc sulfide (ZnS)/zirconium dioxide (ZrO2)/graphene oxide (GO) nanocomposite films were successfully fabricated with the aim of achieving promising biological behavior in the wound healing process. Morphological examination by SEM showed the formation of porous films with a good scattering of ZnS and ZrO2 nanograins, especially amongst ZnS/ZrO2/GO@CS film. In addition, ZnS/ZrO2/GO@CS displayed the lowest contact angle of 67.1 ± 0.9°. Optically, the absorption edge records 2.35 eV for pure chitosan, while it declines to 1.8:1.9 scope with the addition of ZnS, ZrO2, and GO. Normal lung cell (WI-38) proliferation inspection demonstrated that the usage of 2.4 µg/mL ZnS/ZrO2/GO@CS led to a cell viability % of 142.79%, while the usage of 5000 µg/ mL led to a viability of 113.82%. However, the fibroblast malignant cell line exposed to 2.4 µg/mL ZnS/ZrO2/GO@CS showed a viability % of 92.81%, while this percentage showed a steep decline with the usage of 5000 µg/ mL and 2500 µg/mL, reaching 23.28% and 27.81%, respectively. Further biological assessment should be executed with a three-dimensional film scaffold by choosing surrounding media characteristics (normal/malignant) that enhance the selectivity potential. The fabricated scaffolds show promising selective performance, biologically.

8.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555272

RESUMO

Novelmanganese(II), iron(III), cobalt(II), nickel(II), and copper(II) chelates were synthesized and studied using elemental analysis (EA), infrared spectroscopy, mass spectrometry, ultraviolet-visible spectroscopy, and conductivity, as well as magnetic measurements and thermogravimetric analysis (TG). The azo-ligand 1-[(4-nitrophenyl)diazenyl]-2-naphthol (HL) chelates to the metal ions via the nitrogen and oxygen centers of the azo group and the hydroxyl, respectively. The amounts of H2O present and its precise position were identified by thermal analysis. Density functional theory (DFT) was employed to theoretically elucidate the molecular structures of the ligand and the metal complexes. Furthermore, the quantum chemical parameters were also evaluated. The antimicrobial properties were evaluated against a group of fungal and bacterial microbes. Interestingly, the bioactivity of the complexes is enhanced compared to free ligands. Within this context, the CuL complex manifested the lowest activity, whereas the FeL complex had the greatest. Molecular docking was used to foretell the drugs' binding affinity for the structure of Escherichia coli (PDB ID: 1hnj). Protein-substrate interactions were resolved, and binding energies were accordingly calculated.


Assuntos
Complexos de Coordenação , Cobre , Cobre/química , Níquel/química , Ferro/química , Manganês/química , Cobalto/química , Simulação de Acoplamento Molecular , Ligantes , Espectrofotometria Infravermelho , Quelantes , Complexos de Coordenação/química
9.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363182

RESUMO

In this work, the preparation, characterization, and evaluation of a novel nanocomposite using polyaniline (PANi) functionalized bi-metal oxide ZnO-TiO2 (ZnTiO@PANi) as shielding film for carbon steel (CS)-alloy in acidic chloride solution at 298 K was studied. Different spectroscopic characterization techniques, such as UV-visible spectroscopy, dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) approaches, as well as other physicochemical methods, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and field emission scanning electron microscope (FESEM), were used to describe the produced nanocomposites. The significance of these films lies in the ZnO-TiO2 nanoparticle's functionalization by polyaniline, a material with high conductivity and electrochemical stability in acidic solutions. The mechanistic findings of the corrosion inhibition method were obtained by the use of electrochemical methods including open-circuit potentials (OCP) vs. time, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The results indicate that the synthesized ZnTiO@PANi is a powerful acidic corrosion inhibitor, and its inhibition effectiveness is 98.86% in the presence of 100 ppm. Additionally, the charge transfer resistance (Rp) value augmented from 51.8 to 432.7, and 963.7 Ω cm2 when the dose of PANi, and ZnTiO@PANi reached 100 ppm, respectively. The improvement in Rp and inhibition capacity values with an increase in nanocomposite dose is produced by the nanocomposite additives covering a larger portion of the surface, resulting in a decrease in alloy corrosion. By identifying the probable regions for molecule adsorption on the steel substrate, theoretical and computational studies provided significant details regarding the corrosion mitigation mechanism. The possibility of substituting old poisonous small substances with inexpensive and non-hazardous polymeric materials as shielding layers for utilization in the oilfield sectors is an important suggestion made by this research.

10.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365727

RESUMO

Due to their thermal stability characteristics, polymer/composite materials have typically been employed as corrosion inhibitors in a variety of industries, including the maritime, oil, and engineering sectors. Herein, protective films based on binary ZnO-NiO@polyaniline (ZnNiO@PANE) nanocomposite were intended with a respectable yield. The produced nanocomposite was described using a variety of spectroscopic characterization methods, including dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) approaches, in addition to other physicochemical methods, including X-ray powder diffraction (XRD), transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FESEM), and selected area electron diffraction (SAED). By using open-circuit potentials (OCP) vs. time, electrochemical impedance spectroscopic (EIS), and potentiodynamic polarization (PDP) methods, the inhibitory effects of individual PANE and ZnNiO@PANE on the mild steel alloy corrosion in HCl/NaCl solution were assessed. The ZnNiO@PANE composite performed as mixed-type inhibitors, according to PDP findings. PANE polymer and ZnNiO@PANE composite at an optimal dose of 200 mg/L each produced protective abilities of 84.64% and 97.89%, respectively. The Langmuir isotherm model is used to explain the adsorption of ZnNiO@PANE onto MS alloy. DFT calculations showed that the prepared materials' efficiency accurately reflects their ability to contribute electrons, whereas Monte Carlo (MC) simulations showed that the suitability and extent of adsorption of the ZnNiO@PANE molecule at the metal interface determine the materials' corrosion protection process.

11.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956592

RESUMO

Corrosion is considered to be the most severe problem facing alloys and metals, one that causes potentially dangerous industrial issues such as the deterioration of buildings and machinery, and corrosion in factory tanks and pipelines in petroleum refineries, leading to limited lifetime and weak efficacy of such systems. In this work, novel CeO2-nanoparticle-loaded carboxymethyl cellulose (CMC) was successfully prepared by using a simple method. The structural configuration of the prepared CeO2-nanoparticle-loaded CMC was investigated by FE-SEM/EDX, TEM, FT-IR, and thermal analyses. The corrosion protection proficiency of uncoated and coated mild steel with CeO2-CMC systems in 1.0 M HCl solutions was studied by EOCP-time, EIS, and PDP tools. Moreover, the relationship between the structure of coating films and their corrosion protection was confirmed by DFT calculation and MC simulation. The obtained findings from the studied methods showed that the prepared CeO2-CMC-coated films reported high corrosion resistance. The protection capacity augmented with ceria presents an increase of up to 3% to achieve 98.4%. DFT calculation and MC simulation confirmed the influence of the chemical construction of coated films on its protection capacity, which was in accordance with the experimental results.

12.
ACS Omega ; 7(28): 24727-24745, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874227

RESUMO

An effective method for designing new heterocyclic compounds of 6,7-dihydro-5H-cyclopenta[b]pyridine-3-carbonitrile derivatives (CAPDs) was presented through cyclocondensation reaction between 2,5-diarylidenecyclopentanone derivatives and propanedinitrile, and the cyclocondensation reaction succeeded using a sodium alkoxide solution (sodium ethoxide or sodium methoxide) as the reagent and the catalyst. The synthesized CAPD derivatives were employed as novel inhibitors for carbon steel (CS) corrosion in a molar H2SO4 medium. The corrosion protection proficiency was investigated by electrochemical measurements (open circuit potential vs time (E OCP vs t), potentiodynamic polarization plots (PDP), and electrochemical impedance spectroscopy (EIS)) and surface morphology (scanning electron microscopy (SEM)) examinations. The results show that the CAPD derivatives exhibit mixed type inhibitors and a superior inhibition efficiency of 97.7% in the presence of 1.0 mM CAPD-1. The adsorption of CAPD derivatives on the CS interface follows the Langmuir isotherm model, including physisorption and chemisorption. Scanning electron microscopy (SEM) exploration confirmed the adsorption of the CAPD derivatives on the CS substrate. Monte Carlo (MC) simulations and DFT calculations revealed that the efficacy of the CAPD molecules correlates well with their structures, and this protection was attributed to their adsorption on the CS surface.

13.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888309

RESUMO

Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5).

14.
Polymers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808589

RESUMO

An eco-friendly and a facile route successfully prepared novel cerium oxide nanoparticles functionalized by gelatin. The introduced CeO2@gelatin was investigated in terms of FE-SEM, EDX, TEM, chemical mapping, FT-IR, and (TGA) thermal analyses. These characterization tools indicate the successful synthesis of a material having CeO2 and gelatin as a composite material. The prepared composite CeO2@gelatin was used as an environment-friendly coated film or X60 steel alloys in acidizing oil well medium. Moreover, the effect of CeO2 percent on film composition was investigated. LPR corrosion rate, Eocp-time, EIS, and PDP tools determined the corrosion protection capacity. The CeO2@gelatin composite exhibited high protection capacity compared to pure gelatin; in particular, 5.0% CeO2@gelatin coating film shows the highest protection capacity (98.2%), with long-term anti-corrosive features. The % CeO2@gelatin-coated films formed the protective adsorbed layer on the steel interface by developing a strong bond among nitrogen atoms in the CeO2@gelatin film and the electrode interface. Surface morphology using FESEM measurements confirmed the high efficiency of the fabricated CeO2@gelatin composite on the protection X60 steel alloys. DFT calculations and MC simulations were explored to study the relations between the protection action and the molecular construction of the coated systems, which were in good alignment with the empirical findings.

15.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629702

RESUMO

The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, 1H NMR, mass, UV-Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC50 of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88).

16.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458747

RESUMO

Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV-Vis spectroscopy, zeta potential, XRD, FE-SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3- ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Ferro/química , Nitratos/análise , Óxidos de Nitrogênio , Poluentes Químicos da Água/análise
17.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409353

RESUMO

Two tetradentate dibasic chelating Schiff base iron (III) chelates were prepared from the reaction of 2,2'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) (PDBS) and 2,2'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azanylylidene))-bis(methanylylidene))bis(4-bromophenol) (CPBS) with Fe3+ ions. The prepared complexes were fully characterized with spectral and physicochemical tools such as IR, NMR, CHN analysis, TGA, UV-visible spectra, and magnetic moment measurements. Moreover, geometry optimizations for the synthesized ligands and complexes were conducted using the Gaussian09 program through the DFT approach, to find the best structures and key parameters. The prepared compounds were tested as antimicrobial agents against selected strains of bacteria and fungi. The results suggests that the CPBSFe complex has the highest activity, which is close to the reference. An MTT assay was used to screen the newly synthesized compounds against a variety of cell lines, including colon cancer cells, hepatic cellular carcinoma cells, and breast carcinoma cells. The results are expressed by IC50 value, in which the 48 µg/mL value of the CPBSFe complex indicates its success as a potential anticancer agent. The antioxidant behavior of the two imine chelates was studied by DPPH assay. All the tested imine complexes show potent antioxidant activity compared to the standard Vitamin C. Furthermore, the in vitro assay and the mechanism of binding and interaction efficiency of the tested samples with the receptor of COVID-19 core protease viral protein (PDB ID: 6lu7) and the receptor of Gram-negative bacteria (Escherichia coli, PDB ID: 1fj4) were investigated using molecular docking experiments.


Assuntos
Tratamento Farmacológico da COVID-19 , Iminas , Quelantes/química , Quelantes/farmacologia , DNA/química , Teoria da Densidade Funcional , Compostos Férricos , Humanos , Iminas/química , Iminas/farmacologia , Simulação de Acoplamento Molecular , Preparações Farmacêuticas
18.
Polymers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054635

RESUMO

In this work, a Zn-benzenetricarboxylic acid (Zn@H3BTC) organic framework coated with a dispersed layer of chitosan (CH/Zn@H3BTC) was synthesized using a solvothermal approach. The synthesized CH/Zn@H3BTC was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), thermal gravimetric analysis (TGA), and Brunauer, Emmett, and Teller (BET) surface area. The microscopic observation and the analysis of the BET surface area of CH/Zn@H3BTC nanocomposites indicated that chitosan plays an important role in controlling the surface morphology and surface properties of the Zn@H3BTC. The obtained findings showed that the surface area and particle size diameter were in the range of 80 m2 g-1 and 800 nm, respectively. The corrosion protection characteristics of the CH/Zn@H3BTC composite in comparison to pristine chitosan on duplex steel in 2.0 M H2SO4 medium determined by electrochemical (E vs. time, PDP, and EIS) approaches exhibited that the entire charge transfer resistance of the chitosan- and CH/Zn@H3BTC-composite-protected films on the duplex steel substrate was comparatively large, at 252.4 and 364.8 Ω cm2 with protection capacities of 94.1% and 97.8%, respectively, in comparison to the unprotected metal surface (Rp = 20.6 Ω cm2), indicating the films efficiently protected the metal from corrosion. After dipping the uninhabited and protected systems, the surface topographies of the duplex steel were inspected by FESEM. We found the adsorption of the CH/Zn@H3BTC composite on the metal interface obeys the model of the Langmuir isotherm. The CH/Zn@H3BTC composite revealed outstanding adsorption on the metal interface as established by MD simulations and DFT calculations. Consequently, we found that the designed CH/Zn@H3BTC composite shows potential as an applicant inhibitor for steel protection.

19.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614421

RESUMO

Through the condensation of isatin (indoline-2, 3-dione) and aniline in a 1:1 ratio, a Schiff base ligand was synthesized and characterized via (1H-NMR, mass, IR, UV-Vis) spectra. Elemental analyses, spectroscopy (1H-NMR, mass, UV-Vis), magnetic susceptibility, molar conductivity, mass spectra, scanning electron microscope (SEM), and thermal analysis have all been used to characterize a series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) metal complexes derived from the titled ligand. The metal-to-ligand ratio is 1:1, according to the analytical data. The Schiff base ligand displayed bidentate behavior with NO coordination sites when it bonded to metal ions, as seen by the IR spectra. The magnetic moment measurement and UV-Vis spectral investigation showed the octahedral geometry of the Cr(III), Fe(III), Co(II), Ni(II), and Zn(II) complexes, whereas they suggested the tetrahedral geometry of the Mn(II), Cu(II), and Cd(II) complexes. The thermal analysis study confirmed the presence of both hydrated and coordinated water molecules in all the compounds, except for the Mn(II) complex, and showed that the complexes decomposed in three or five decomposition steps leaving the corresponding metal oxide as a residue. The ligand and its metal complexes' antibacterial efficacy were evaluated. The findings showed that the metal complexes had stronger antibacterial properties than the ligand alone. The ligand and its metal complexes' anticancer properties were also investigated. A DFT investigation is also reported to gather information regarding the electronic features of the ligand and its metal complexes. Finally, drug-likeness and ADME characteristics were also calculated as parameters.

20.
J Colloid Interface Sci ; 368(1): 56-63, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22200329

RESUMO

Iron oxide/MCM-41 nanocomposites, Fe(2)O(3)/MCM-41, containing 5%, 10%, and 20% (w/w) iron oxide, were prepared via a direct nonhydrothermal method at room temperature. The preparations were preformed by using iron(III) nitrate, tetra-ethoxysilane (TEOS), and cetyltrimethylammonium bromide (CTAB) mixed or unmixed with dodecyltrimethylammonium bromide (DTAB). The produced materials were dried and calcined at 550 °C for 3 h. Test materials were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), N(2) gas adsorption/desorption isotherms, small angle and wide angle X-ray diffraction (XRD). Results indicate that mixing of CTAB with DTAB does not harm the formation of blank MCM-41 structure. For the composite Fe(2)O(3)/MCM-41 materials, results showed formation of more stable MCM-41 structure with higher surface area and improved porosity in the presence of mixed (CTAB+DTAB) than in the presence of single (CTAB) surfactants for up to 10% Fe(2)O(3)/MCM-41 (w/w). This was explained in terms of the effect DTAB on contraction of the template micellar size to compensate for the expected size expansion upon the addition of ionic iron(III) nitrate precursor. Highly dispersed Fe(2)O(3) nanoparticles were formed in all cases even with the highest iron oxide percentage. Formation of the nanocomposites was postulated to be determined by fast nucleation and slow growth of iron oxide species, which facilitated formation of well dispersed iron oxide nanoparticles inside and on the wall of the MCM-41 material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA