Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Tissue Cell ; 85: 102239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865037

RESUMO

BACKGROUND: Toxic cardiomyopathies were a potentially fatal adverse effect of anthracycline therapy. AIM: This study was conducted to demonstrate the pathogenetic, morphologic, and toxicologic effects of doxorubicin on the heart and to investigate how the MAPK /TNF-α pathway can be modulated to improve doxorubicin-Induced cardiac lesions using bone marrow-derived mesenchymal stem cells (BM-MSCs) and olive leaf extract (OLE). METHODS: During the study, 40 adult male rats were used. Ten were used to donate MSCs, and the other 30 were split into 5 equal groups: Group I was the negative control, Group II obtained oral OLE, Group III obtained an intraperitoneal cumulative dose of DOX (12 mg/kg) in 6 equal doses of 2 mg/kg every 48 h for 12 days, Group IV obtained intraperitoneal DOX and oral OLE at the same time, and Group V obtained intraperitoneal DOX and BM-MSCs through the tail vein at the same time for 12 days. Four weeks after their last dose of DOX, the rats were euthanized. By checking the bioinformatic databases, a molecularly targeted path was selected. Then the histological, immunohistochemistry, and gene expression of ERK, JNK, NF-κB, IL-6, and TNF-α were done. RESULTS: Myocardial immunohistochemistry revealed severe fibrosis, cell degeneration, increased vimentin, and decreased CD-31 expression in the DOX-treated group, along with a marked shift in morphometric measurements, a disordered ultrastructure, and overexpression of inflammatory genes (ERK, NF-κB, IL-6, and TNF-α), oxidative stress markers, and cardiac biomarkers. Both groups IV and V displayed reduced cardiac fibrosis or inflammation, restoration of the microstructure and ultrastructure of the myocardium, downregulation of inflammatory genes, markers of oxidative stress, and cardiac biomarkers, a notable decline in vimentin, and an uptick in CD-31 expression. In contrast to group IV, group V showed a considerable beneficial effect. CONCLUSION: Both OLE and BM-MSCs showed an ameliorating effect in rat models of DOX-induced cardiotoxicity, with BM-MSCs showing a greater influence than OLE.


Assuntos
Cardiotoxicidade , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Cardiotoxicidade/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Doxorrubicina/toxicidade , Estresse Oxidativo , Células-Tronco Mesenquimais/metabolismo , Biomarcadores/metabolismo , Apoptose
2.
Toxics ; 10(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36136492

RESUMO

BACKGROUND: Hepatic and renal damage is a cisplatin (Cis)-induced deleterious effect that is a major limiting factor in clinical chemotherapy. OBJECTIVES: The current study was designed to investigate the influence of pretreatment with olive leaf extract (OLE), bone-marrow-derived mesenchymal stem cells (BM-MSC), and their conditioned media (CM-MSC) against genotoxicity, nephrotoxicity, hepatotoxicity, and immunotoxicity induced by cisplatin in rats. METHODS: The rats were randomly divided into six groups (six rats each) as follows: Control; OLE group, treated with OLE; Cis group, treated with a single intraperitoneal dose of Cis (7 mg/kg bw); Cis + OLE group, treated with OLE and cisplatin; Cis + CM-MSC group, treated with BM-MSC conditioned media and Cis; and Cis + MSC group, treated with BM-MSC in addition to Cis. RESULTS: Cis resulted in a significant deterioration in hepatic and renal functions and histological structures. Furthermore, it increased inflammatory markers (TNF-α, IL-6, and IL-1ß) and malondialdehyde (MDA) levels and decreased glutathione (GSH) content, total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activity in hepatic and renal tissues. Furthermore, apoptosis was evident in rat tissues. A significant increase in serum 8-hydroxy-2-deoxyguanosine (8-OH-dG), nitric oxide (NO) and lactate dehydrogenase (LDH), and a decrease in lysozyme activity were detected in Cis-treated rats. OLE, CM-MSC, and BM-MSC have significantly ameliorated Cis-induced deterioration in hepatic and renal structure and function and improved oxidative stress and inflammatory markers, with preference to BM-MSC. Moreover, apoptosis was significantly inhibited, evident from the decreased expression of Bax and caspase-3 genes and upregulation of Bcl-2 proteins in protective groups as compared to Cis group. CONCLUSIONS: These findings indicate that BM-MSC, CM-MSC, and OLE have beneficial effects in ameliorating cisplatin-induced oxidative stress, inflammation, and apoptosis in the hepatotoxicity, nephrotoxicity, immunotoxicity, and genotoxicity in a rat model.

3.
Int. j. morphol ; 40(4): 1134-1146, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1405239

RESUMO

SUMMARY: The postmortem diagnosis of death by drowning is one of the most difficult issues in forensic pathology. We investigated possible evidence differentiating saltwater drowning from freshwater drowning by histopathological changes in brain, heart, lungs, liver, and kidneys tissues. A cross section descriptive study was carried out on eighteen 12-week-old male Wistar rats; they were divided equally into 3 groups. Group 1: control group; Group 2: death by drowning in freshwater; Group 3: death by drowning in saltwater. Immediately after death, all tested organs were removed and fixed for histopathological examination. The brain of freshwater group depicted degenerated neurocytes with dystrophic changes in the form of shrunken cell, pyknotic nuclei and deeply eosinophilic cytoplasm. The heart showed clear evidence of myocyte injuries in saltwater drowning compared to the control and freshwater groups. The kidneys of rats drown in saltwater revealed more glomerular destruction with no differences in tubulo-interstitial changes in comparison with those drown in freshwater. In the lungs, the changes in freshwater were restricted to the alveoli, and the bronchial changes were more distinctive in saltwater. No disturbed liver architecture was seen in both test groups, however hydropic degeneration, congested vessels, and sinusoids were more distinct in saltwater group. In conclusion, diagnostic differentiation between fresh and saltwater drowning was reliable in rats' lungs and heart with minimal differentiation in liver, kidneys, and brain. Further studies of drowning with different staining techniques will help to clarify the potential role of histopathological changes in body organs as indicator of drowning.


RESUMEN: El diagnóstico post mortem de muerte por ahogamiento es uno de los temas más difíciles de la patología forense. Investigamos la posible evidencia que diferencia el ahogamiento en agua salada del ahogamiento en agua dulce por cambios histopatológicos en los tejidos del cerebro, el corazón, los pulmones, el hígado y los riñones. Se realizó un estudio descriptivo de corte transversal en dieciocho ratas Wistar macho de 12 semanas de edad; se dividieron por igual en 3 grupos. Grupo 1: grupo control; Grupo 2: muerte por ahogamiento en agua dulce; Grupo 3: muerte por ahogamiento en agua salada. Inmediatamente después de la muerte, se extirparon todos los órganos analizados y se fijaron para el examen histopatológico. El cerebro del grupo de agua dulce mostró neurocitos degenerados con cambios distróficos en forma de células encogidas, núcleos picnóticos y citoplasma profundamente eosinofílico. El corazón mostró una clara evidencia de lesiones de miocitos en los ahogamientos en agua salada en comparación con los grupos de control y de agua dulce. Los riñones de ratas ahogadas en agua salada revelaron una mayor destrucción glomerular sin diferencias en los cambios túbulo-intersticiales en comparación con las ahogadas en agua dulce. En los pulmones, los cambios en agua dulce se restringieron a los alvéolos y los cambios bronquiales fueron más distintivos en agua salada. No se observó una arquitectura hepática alterada en ambos grupos de prueba, sin embargo, la degeneración hidrópica, los vasos congestionados y los sinusoides fueron más distintos en el grupo de agua salada. En conclusión, la diferenciación diagnóstica entre ahogamiento en agua dulce y salada fue confiable en los pulmones y el corazón de las ratas con una diferenciación mínima en el hígado, los riñones y el cerebro. Estudios adicionales de ahogamiento con diferentes técnicas de tinción ayudarán a aclarar el papel potencial de los cambios histopatológicos en los órganos del cuerpo como indicador de ahogamiento.


Assuntos
Animais , Masculino , Ratos , Águas Salinas , Afogamento/patologia , Água Doce , Encéfalo/patologia , Estudos Transversais , Ratos Wistar , Medicina Legal , Rim/patologia , Fígado/patologia , Pulmão/patologia
4.
J Chem Neuroanat ; 112: 101893, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33276071

RESUMO

BACKGROUND: Reported tramadol toxicity emphasizes the necessity to recognize its mechanism of toxicity, particularly to the brain tissue. AIM: This study aimed to evaluate the protective effect of vitamin C (Vit C) in cerebrocortical toxicity mediated by tramadol in rats using biochemical and histological parameters. MATERIAL AND METHODS: Forty-eight albino rats were randomly divided into eight groups, (n = 6/group) as follow: the control group received normal saline and vitamin C group received vitamin C (200 mg/kg per oral). Tramadol 50, 100, 150 groups received tramadol in doses of (50, 100 and 150 mg/kg per oral, respectively); Tramadol 50+ Vit C, 100+ Vit C, 150+ Vit C groups received vitamin C (200 mg/kg per oral) plus tramadol in doses of (50, 100 and 150 mg/kg per oral, respectively). Rats had received vitamin C and tramadol daily for 30 days. Blood and brain tissues samples were harvested for biochemical, histopathological, immunohistochemical and electron microscopic examinations. RESULTS: Tramadol administration leads to a significant elevation of MDA, NO levels and a significant decrease in antioxidants parameters (CAT, SOD and GSH) in the tissues of cerebral cortices in rats which were directly proportional to the dose of tramadol. In histological investigations, tramadol-treated groups showed pyknotic pyramidal cells, multiple red neurons and shrinking red neurons with hallows around it and apoptotic cells were detected. These biochemical abnormalities and histological impairment were ameliorated in groups with tramadol low doses by the co-treatment with vitamin C. CONCLUSION: vitamin C has antioxidant and anti-apoptotic potentials against tramadol neurotoxicity via suppression of oxidative stress, lipid peroxidation, structural abnormalities, and down-regulation of p53 and overexpression of Bcl2 in the nervous tissues.


Assuntos
Analgésicos Opioides/toxicidade , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Córtex Cerebral/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tramadol/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Córtex Cerebral/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA