Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17122, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360097

RESUMO

The eigenvalues are significant in mathematics, but they are also relevant in other domains like as chemistry, economics, and a variety of others. In terms of our research, eigenvalues are used in chemistry to represent not only the form of energy but also the various physicochemical aspects of a chemical substance. We must comprehend the connection between mathematics and chemistry. The antibonding level is related to positive eigenvalues, the bonding level is associated to negative eigenvalues, and the nonbonding level is linked to zero eigenvalues. In this work, we studied some anticancer drug structures in terms of nullity, matching number, eigenvalues of adjacency matrix, and characteristics polynomials. As a result, Carmustine, Caulibugulone-E, Aspidostomide-E anticancer drug structures are stable, closed-shell molecules since their nullity is equal to zero.

2.
Nature ; 577(7790): 405-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775156

RESUMO

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2, despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury4,5. Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2+ and CX3CR1+ macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


Assuntos
Imunidade Inata , Miócitos Cardíacos/imunologia , Transplante de Células-Tronco , Células-Tronco , Animais , Diferenciação Celular , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/transplante , Rejuvenescimento
3.
Sci Adv ; 5(8): eaaw4597, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489369

RESUMO

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPTP formation. Inner-membrane patch clamping in mitochondria from Ant1, Ant2, and Ant4 triple null mouse embryonic fibroblasts showed a loss of MPTP activity. Our findings suggest a model for the MPTP consisting of two distinct molecular components: The ANTs and an unknown species requiring CypD.


Assuntos
Nucleotídeos de Adenina/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/genética , Peptidil-Prolil Isomerase F/genética , Deleção de Sequência/genética , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Poro de Transição de Permeabilidade Mitocondrial
4.
Circulation ; 138(10): 1012-1024, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666070

RESUMO

BACKGROUND: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells. METHODS: Kit allele-dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type-specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. RESULTS: Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. CONCLUSIONS: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.


Assuntos
Linhagem da Célula , Proliferação de Células , Células Endoteliais/metabolismo , Fator de Transcrição GATA4/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regeneração , Animais , Transplante de Medula Óssea , Fusão Celular , Rastreamento de Células/métodos , Células Cultivadas , Feminino , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
5.
PLoS One ; 11(10): e0164897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764156

RESUMO

Nemo-like kinase (NLK) is an evolutionary conserved serine/threonine protein kinase implicated in development, proliferation and apoptosis regulation. Here we identified NLK as a gene product induced in the hearts of mice subjected to pressure overload or myocardial infarction injury, suggesting a potential regulatory role with pathological stimulation to this organ. To examine the potential functional consequences of increased NLK levels, cardiac-specific transgenic mice with inducible expression of this gene product were generated, as well as cardiac-specific Nlk gene-deleted mice. NLK transgenic mice demonstrated baseline cardiac hypertrophy, dilation, interstitial fibrosis, apoptosis and progression towards heart failure in response to two surgery-induced cardiac disease models. In contrast, cardiac-specific deletion of Nlk from the heart, achieved by crossing a Nlk-loxP allele containing mouse with either a mouse containing a ß-myosin heavy chain promoter driven Cre transgene or a tamoxifen inducible α-myosin heavy chain promoter containing transgene driving a MerCreMer cDNA, protected the mice from cardiac dysfunction following pathological stimuli. Mechanistically, NLK interacted with multiple proteins including the transcription factor Stat1, which was significantly increased in the hearts of NLK transgenic mice. These results indicate that NLK is a pathological effector in the heart.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/genética , Miocárdio/metabolismo , Animais , Cardiomiopatias/etiologia , Células Cultivadas , Ecocardiografia , Feminino , Células HEK293 , Coração/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
6.
Mol Cell Biol ; 32(22): 4523-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22949508

RESUMO

The ability to generate appropriate defense responses is crucial for the survival of an organism exposed to pathogenesis-inducing insults. However, the mechanisms that allow tissues and organs to cope with such stresses are poorly understood. Here we show that caspase-3-knockout mice or caspase inhibitor-treated mice were defective in activating the antiapoptotic Akt kinase in response to various chemical and environmental stresses causing sunburns, cardiomyopathy, or colitis. Defective Akt activation in caspase-3-knockout mice was accompanied by increased cell death and impaired survival in some cases. Mice homozygous for a mutation in RasGAP that prevents its cleavage by caspase-3 exhibited a similar defect in Akt activation, leading to increased apoptosis in stressed organs, marked deterioration of their physiological functions, and stronger disease development. Our results provide evidence for the relevance of caspase-3 as a stress intensity sensor that controls cell fate by either initiating a RasGAP cleavage-dependent cell resistance program or a cell suicide response.


Assuntos
Cardiomiopatias/enzimologia , Caspase 3/genética , Colite/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Queimadura Solar/enzimologia , Proteína p120 Ativadora de GTPase/genética , Animais , Sequência de Bases , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Caspase 3/deficiência , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana , Doxorrubicina , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Hemodinâmica , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Estresse Fisiológico , Queimadura Solar/genética , Raios Ultravioleta , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/deficiência
7.
Free Radic Biol Med ; 53(4): 926-35, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22721922

RESUMO

Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart.


Assuntos
Apoptose/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oxidantes/farmacologia , Fragmentos de Peptídeos/metabolismo , Ácido Peroxinitroso/farmacologia , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular , Cisplatino/farmacologia , Expressão Gênica , Humanos , Camundongos , Mutagênicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/fisiologia
8.
PLoS One ; 6(7): e22609, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799917

RESUMO

The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus/patologia , Progressão da Doença , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Fragmentos de Peptídeos/farmacologia , Proteínas Ativadoras de ras GTPase/química , Animais , Autoimunidade/efeitos dos fármacos , Linhagem Celular Tumoral , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fragmentos de Peptídeos/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
9.
J Biol Chem ; 282(49): 36010-23, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17897954

RESUMO

In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H(2)O(2)-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Delta oye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H(2)O(2)-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H(2)O(2)-induced PCD in wild type cells, but accelerate PCD in Delta oye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Delta oye2 oye3) is highly resistant to H(2)O(2)-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H(2)O(2)-induced cell death: in Delta oye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.


Assuntos
Apoptose/fisiologia , FMN Redutase/metabolismo , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/enzimologia , Actinas/genética , Actinas/metabolismo , Sequência de Aminoácidos/genética , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , FMN Redutase/genética , Glutationa/genética , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Mutação de Sentido Incorreto , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA