Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 57(7): e13608, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38336976

RESUMO

The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.


Assuntos
Relógios Circadianos , Neoplasias , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Relógios Circadianos/fisiologia , Animais , Ritmo Circadiano/fisiologia
2.
Gene ; 739: 144508, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32097695

RESUMO

Pesticides exposure can have harmful effects on human health. The liver is the most common organ of pesticides toxicity due to its major metabolic activity. The molecular mechanism of pesticides effect is complex and is controlled by gene regulatory networks. All components of regulatory networks are controlled by transcription factors and other regulatory elements. Therefore, identification of key regulators through system biology approaches and high-throughput techniques can help to provide comprehensive insights into molecular mechanisms of the pesticide effect. In the current study, a microarray data-set was used to potentially identify molecular mechanisms that regulate gene expression profile of rat hepatocyte cell lines in response to pesticides exposure. Results showed that the number of differentially expressed genes (DEGs) and differentially expressed transcription factors (DE-TFs) were dramatically different among pesticides tested. Results also revealed 205 common DEGs and 11 DE-TFs among pesticides tested. Additionally, we found that six DE-TFs (CREB1, CTNNB1, PPARG, SP1, SRF and STAT3) had the highest number of interactions with other DEGs and acted as the key regulatory genes. The results of this study revealed regulator genes that have the key functions in response to pesticides toxicity in rat liver, which can provide the basis for future studies. Furthermore, these regulatory genes can be used as toxicity biomarkers to improve diagnosis and prognosis.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Reguladores/genética , Praguicidas/toxicidade , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Especificidade de Órgãos , Ratos
3.
Adv Pharm Bull ; 6(4): 627-637, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101470

RESUMO

Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA