Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1139808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153546

RESUMO

Toll like receptor 4 (TLR4), a pathogen-associated molecular pattern (PAMP) receptor, is known to exert inflammation in various cases of microbial infection, cancer and autoimmune disorders. However, any such involvement of TLR4 in Chikungunya virus (CHIKV) infection is yet to be explored. Accordingly, the role of TLR4 was investigated towards CHIKV infection and modulation of host immune responses in the current study using mice macrophage cell line RAW264.7, primary macrophage cells of different origins and in vivo mice model. The findings suggest that TLR4 inhibition using TAK-242 (a specific pharmacological inhibitor) reduces viral copy number as well as reduces the CHIKV-E2 protein level significantly using p38 and JNK-MAPK pathways. Moreover, this led to reduced expression of macrophage activation markers like CD14, CD86, MHC-II and pro-inflammatory cytokines (TNF, IL-6, MCP-1) significantly in both the mouse primary macrophages and RAW264.7 cell line, in vitro. Additionally, TAK-242-directed TLR4 inhibition demonstrated a significant reduction of percent E2-positive cells, viral titre and TNF expression in hPBMC-derived macrophages, in vitro. These observations were further validated in TLR4-knockout (KO) RAW cells. Furthermore, the interaction between CHIKV-E2 and TLR4 was demonstrated by immuno-precipitation studies, in vitro and supported by molecular docking analysis, in silico. TLR4-dependent viral entry was further validated by an anti-TLR4 antibody-mediated blocking experiment. It was noticed that TLR4 is necessary for the early events of viral infection, especially during the attachment and entry stages. Interestingly, it was also observed that TLR4 is not involved in the post-entry stages of CHIKV infection in host macrophages. The administration of TAK-242 decreased CHIKV infection significantly by reducing disease manifestations, improving survivability (around 75%) and reducing inflammation in mice model. Collectively, for the first time, this study reports TLR4 as one of the novel receptors to facilitate the attachment and entry of CHIKV in host macrophages, the TLR4-CHIKV-E2 interactions are essential for efficient viral entry and modulation of infection-induced pro-inflammatory responses in host macrophages, which might have translational implication for designing future therapeutics to regulate the CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Receptor 4 Toll-Like , Animais , Camundongos , Inflamação , Macrófagos , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral , Replicação Viral
2.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36441239

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel is a thermo-sensitive, polymodal cation channel. An increase in intracellular calcium (Ca2+) is essential for T-cell responses. Similarly, various immunosuppressive agents are also reported to induce Ca2+ influx. However, the possible involvement of TRPV1 during immunosuppression has not been studied yet. Here, we investigated the possible functional role of TRPV1 in FK506 or B16F10-culture supernatant (B16F10-CS)-driven experimental immunosuppression in T-cells. Intriguingly, it was found that TRPV1 surface expression was further significantly elevated during immunosuppression compared with concanavalin A (ConA) or TCR-activated T-cells. Moreover, in B16F10 tumor-bearing mice, TRPV1 expression was upregulated on splenic T-cells as compared with T-cells derived from control mice. We also observed an immediate increase in intracellular Ca2+ levels in FK506 (marked increase) and B16F10-CS treatment (modest increase) or in combination with T-cell activation as compared with resting and activated T-cells. Likewise, in B16F10 tumor-bearing mice, the basal intracellular calcium level was upregulated in T-cells as compared with controls. The elevated Ca2+ level(s) were found to be significantly downregulated by 5'-iodoresiniferatoxin (50-IRTX) (a TRPV1-specific inhibitor), suggesting an important role of TRPV1 during immune activation and immunosuppression. The current study may have implications for immunosuppressive diseases along with inflammatory disorders associated with the coordinating role of TRPV1 and Ca2+ influx.


Assuntos
Antineoplásicos , Linfócitos T , Camundongos , Animais , Tacrolimo/farmacologia , Cálcio , Terapia de Imunossupressão , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA