Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175665

RESUMO

Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.


Assuntos
Doenças Autoimunes , Doenças Neuroinflamatórias , Humanos , Interleucina-17 , Interleucina-6 , Interleucinas , Inflamação/tratamento farmacológico , Citocinas , Células Th17 , Interleucina-1/uso terapêutico
2.
J Ethnopharmacol ; 298: 115651, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998784

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Since pre-Columbian era, the resin of Araucaria araucana tree has been used traditionally for the treatment of ulcers and wounds. Araucaria species have also been used to treat inflammation, respiratory problems, viral infections, ulcers, and rheumatoid, cardiovascular, and neurological disorders. AIMS AND OBJECTIVE: Due to its popular use, the authors aimed to scrutinize the potential of this plant as an antispasmodic and an antiemetic agent. Furthermore broncho- and vasodilatory effects of this plant was explored to rationalize its folkloric uses. MATERIALS AND METHODS: Araucaria araucana crude extract (Aa.Cr) was evaluated in isolated preparations of rabbit jejunum, trachea, aorta, and atria to investigate the antispasmodic, bronchodilator, and vasodilator effects. The potential mechanistic approaches were compared with the standard drug 'verapamil'. The antiemetic activity was determined and compared with the standard drug 'domperidone' via chick emesis model. RESULTS: Aa.Cr dose-dependently relaxed both spontaneous and K+-induced contractions in the isolated jejunum preparations of rabbits. In concentration-response curves of calcium (Ca++), Aa.Cr also triggered the rightward shift like verapamil. Applying carbachol and phenylephrine (1 µM) and K+ (80 mM) to the isolated tracheal and aortic tissue preparation, respectively, resulted in broncho- and vasodilatory activities, respectively which may be due to the inhibition of Ca++ channels. Aa.Cr inhibited atrial force and spontaneous contractions in the rabbit's right atria. Aa.Cr exhibited significant antiemetic activity (P < 0.001 vs. saline) in dose-dependent (50-150 mg/kg) manner like domperidone. In silico molecular docking was performed to investigate the biological targets of purified components of Aa.Cr which revealed that cadinol dominantly targets ß2 receptors to cause bronchodilation, however, eudesmin binds non-specifically to all the selected targets, while secoisolariciresinol mediated high hydrogen bonding with muscarinic receptors (M1 and M3) and Ca++ channels, thus shows the suggested mechanistic pathways of targeted activities. CONCLUSIONS: The results of this study indicates that Aa.Cr may exhibit antispasmodic activity, bronchodilation, and vasodilation by inhibiting voltage-dependent Ca++ channels and release of subcellular calcium. This explains its folkloric use in hypertension, bronchospasms, gastrointestinal spasms, and emesis.


Assuntos
Antieméticos , Parassimpatolíticos , Animais , Antieméticos/farmacologia , Araucaria araucana , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio , Fármacos Gastrointestinais/farmacologia , Jejuno , Simulação de Acoplamento Molecular , Parassimpatolíticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Coelhos , Traqueia , Úlcera/tratamento farmacológico , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico , Verapamil/farmacologia , Vômito/tratamento farmacológico
3.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956877

RESUMO

The current study explored the effects of natural compounds, berbamine, bergapten, and carveol on paclitaxel-associated neuroinflammatory pain. Berbamine, an alkaloid obtained from BerberisamurensisRuprhas been previously researched for anticancer and anti-inflammatory potential. Bergapten is 5-methoxsalenpsoralen previously investigated in cancer, vitiligo, and psoriasis. Carveol obtained from caraway is a component of essential oil. The neuropathic pain model was induced by administering 2 mg/kg of paclitaxel (PTX) every other day for a week. After the final PTX injection, a behavioral analysis was conducted, and subsequently, tissue was collected for molecular analysis. Berbamine, bergapten, and carveol treatment attenuated thermal hypersensitivity, improved latency of falling, normalized the changes in body weight, and increased the threshold for pain sensation. The drugs increased the protective glutathione (GSH) and glutathione S-transferase (GST) levels in the sciatic nerve and spinal cord while lowering inducible nitric oxide synthase (iNOS) and lipid peroxidase (LPO). Hematoxylin and eosin (H and E) and immunohistochemistry (IHC) examinations confirmed that the medication reversed the abnormal alterations. The aforementioned natural substances inhibited cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κb) overexpression, as evidenced by enzyme-linked immunosorbant assay (ELISA) and Western blot and hence provide neuroprotection in chronic constriction damage.


Assuntos
Dor Crônica , Neuralgia , Fármacos Neuroprotetores , 5-Metoxipsoraleno/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , NF-kappa B/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Paclitaxel/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
4.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456005

RESUMO

Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants' bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Plantas/química
5.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948128

RESUMO

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Assuntos
Calcificação Fisiológica , Osteoblastos/metabolismo , Síndrome de Shwachman-Diamond/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Osteoblastos/patologia , Proteínas/genética , Proteínas/metabolismo , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Proteína Supressora de Tumor p53/genética
6.
J Inflamm Res ; 14: 5659-5679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754213

RESUMO

OBJECTIVE: The study investigated the effect 5-[(naphthalen-2-yloxy) methyl]-1,3,4-oxadiaszole2-thiol (B3) in animal model of acute epileptic shock. METHODS: The pharmacokinetics profile of B3 was checked through SwissADME software. The binding affinities of B3, diazepam, and flumazenil (FLZ) were obtained through Auto Dock and PyRx. Post docking analysis and interpretation of hydrogen bonds were performed through Discovery Studio Visualizer 2016. Molecular dynamics simulations of three complexes were carried out through Desmond software package. B3 was then proceeded in PTZ-induced acute seizures models. Flumazenil was used in animal studies for elucidation of possible mechanism of B3. After behavioral studies, the animals were sacrificed, and the brain samples were isolated and stored in 4% formalin for molecular investigations including H and E staining, IHC staining and Elisa etc. RESULTS: The results demonstrate that B3 at 20 and 40 mg/kg prolonged the onset time of generalized seizures. B3 considerably increased the expression of protective glutathione S-transferase and glutathione reductase and reduced lipid peroxidation and inducible nitric oxide synthase (P < 0.001) in the cortex. B3 significantly suppressed (P < 0.01) the over expression of the inflammatory mediator tumor necrosis factor-α, whose up-regulation is reported in acute epileptic shocks. CONCLUSION: Hence, it is concluded from the aforementioned results that B3 provides neuroprotective effects PTZ-induced acute epileptic model. FLZ pretreatment resulted in inhibition of the anticonvulsant effect of B3. B3 possesses anticonvulsant effect which may be mediated through GABAA mediated antiepileptic pathway.

7.
Mol Cytogenet ; 14(1): 54, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819134

RESUMO

BACKGROUND: An isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q), are the most frequent anomalies in the bone marrow of patients with Shwachman-Diamond syndrome, which is caused in most cases by mutations of the SBDS gene. These clonal changes imply milder haematological symptoms and lower risk of myelodysplastic syndromes and acute myeloid leukaemia, thanks to already postulated rescue mechanisms. RESULTS: Bone marrow from fourteen patients exhibiting either the i(7)(q10) or the del(20)(q) and coming from two large cohorts of patients, were subjected to chromosome analyses, Fluorescent In Situ Hybridization with informative probes and array-Comparative Genomic Hybridization. One patient with the i(7)(q10) showed a subsequent clonal rearrangement of the normal chromosome 7 across years. Four patients carrying the del(20)(q) evolved further different del(20)(q) independent clones, within a single bone marrow sample, or across sequential samples. One patient with the del(20)(q), developed a parallel different clone with a duplication of chromosome 3 long arm. Eight patients bore the del(20)(q) as the sole chromosomal abnormality. An overall overview of patients with the del(20)(q), also including cases already reported, confirmed that all the deletions were interstitial. The loss of material varied from 1.7 to 26.9 Mb and resulted in the loss of the EIF6 gene in all patients. CONCLUSIONS: Although the i(7)(q) and the del(20)(q) clones are frequent and clinically benign in Shwachman Diamond-syndrome, in the present work we show that they may rearrange, may be lost and then reconstructed de novo, or may evolve with independent clones across years. These findings unravel a striking selective pressure exerted by SBDS deficiency driving to karyotype instability and to specific clonal abnormalities.

8.
Rev Assoc Med Bras (1992) ; 67(2): 248-259, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34406249

RESUMO

OBJECTIVES: This study aimed to develop artificial intelligence and machine learning-based models to predict alterations in liver enzymes from the exposure of low annual average effective doses in radiology and nuclear medicine personnel of Institute of Nuclear Medicine and Oncology Hospital. METHODS: Ninety workers from the Radiology and Nuclear Medicine departments were included. A high-capacity thermoluminescent was used for annual average effective radiation dose measurements. The liver function tests were conducted for all subjects and controls. Three supervised learning models (multilayer precentron; logistic regression; and random forest) were applied and cross-validated to predict any alteration in liver enzymes. The t-test was applied to see if subjects and controls were significantly different in liver function tests. RESULTS: The annual average effective doses were in the range of 0.07-1.15 mSv. Alanine transaminase was 50% high and aspartate transaminase was 20% high in radiation workers. There existed a significant difference (p=0.0008) in Alanine-aminotransferase between radiation-exposed and radiation-unexposed workers. Random forest model achieved 90-96.6% accuracies in Alanine-aminotransferase and Aspartate-aminotransferase predictions. The second best classifier model was the Multilayer perceptron (65.5-80% accuracies). CONCLUSION: As there is a need of regular monitoring of hepatic function in radiation-exposed people, our artificial intelligence-based predicting model random forest is proved accurate in prediagnosing alterations in liver enzymes.


Assuntos
Inteligência Artificial , Exposição Ocupacional , Algoritmos , Humanos , Fígado , Exposição Ocupacional/efeitos adversos , Doses de Radiação
9.
Clin Sci (Lond) ; 135(9): 1165-1187, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988232

RESUMO

Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cerebrovascular and cardiovascular consequences such as heart failure and stroke and is a major contributor to cardiovascular-related mortality worldwide. Atherosclerosis development is a complex process that involves specific structural, functional and transcriptional changes in different vascular cell populations at different stages of the disease. The application of single-cell RNA sequencing (scRNA-seq) analysis has discovered not only disease-related cell-specific transcriptomic profiles but also novel subpopulations of cells once thought as homogenous cell populations. Vascular cells undergo specific transcriptional changes during the entire course of the disease. Epigenetics is the instruction-set-architecture in living cells that defines and maintains the cellular identity by regulating the cellular transcriptome. Although different cells contain the same genetic material, they have different epigenomic signatures. The epigenome is plastic, dynamic and highly responsive to environmental stimuli. Modifications to the epigenome are driven by an array of epigenetic enzymes generally referred to as writers, erasers and readers that define cellular fate and destiny. The reversibility of these modifications raises hope for finding novel therapeutic targets for modifiable pathological conditions including atherosclerosis where the involvement of epigenetics is increasingly appreciated. This article provides a critical review of the up-to-date research in the field of epigenetics mainly focusing on in vivo settings in the context of the cellular role of individual vascular cell types in the development of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Células Endoteliais/metabolismo , Epigênese Genética , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/etiologia , Animais , Aterosclerose/metabolismo , Aterosclerose/terapia , Metilação de DNA , Fibroblastos/metabolismo , Código das Histonas , Humanos , Linfócitos/metabolismo , Macrófagos/metabolismo , Terapia de Alvo Molecular , Análise de Célula Única
10.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);67(2): 248-259, Feb. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1287808

RESUMO

SUMMARY OBJECTIVES: This study aimed to develop artificial intelligence and machine learning-based models to predict alterations in liver enzymes from the exposure of low annual average effective doses in radiology and nuclear medicine personnel of Institute of Nuclear Medicine and Oncology Hospital. METHODS: Ninety workers from the Radiology and Nuclear Medicine departments were included. A high-capacity thermoluminescent was used for annual average effective radiation dose measurements. The liver function tests were conducted for all subjects and controls. Three supervised learning models (multilayer precentron; logistic regression; and random forest) were applied and cross-validated to predict any alteration in liver enzymes. The t-test was applied to see if subjects and controls were significantly different in liver function tests. RESULTS: The annual average effective doses were in the range of 0.07-1.15 mSv. Alanine transaminase was 50% high and aspartate transaminase was 20% high in radiation workers. There existed a significant difference (p=0.0008) in Alanine-aminotransferase between radiation-exposed and radiation-unexposed workers. Random forest model achieved 90-96.6% accuracies in Alanine-aminotransferase and Aspartate-aminotransferase predictions. The second best classifier model was the Multilayer perceptron (65.5-80% accuracies). CONCLUSION: As there is a need of regular monitoring of hepatic function in radiation-exposed people, our artificial intelligence-based predicting model random forest is proved accurate in prediagnosing alterations in liver enzymes.


Assuntos
Humanos , Inteligência Artificial , Exposição Ocupacional/efeitos adversos , Doses de Radiação , Algoritmos , Fígado
11.
Brain Sci ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066162

RESUMO

The production and up-regulation of inflammatory mediators are contributing factors for the development and maintenance of neuropathic pain. In the present study, the post-treatment of synthetic 1,3,4 oxadiazole derivative (B3) for its neuroprotective potential in chronic constriction injury-induced neuropathic pain was applied. In-silico studies were carried out through Auto Dock, PyRx, and DSV to obtain the possible binding and interactions of the ligands (B3) with COX-2, IL-6, and iNOS. The sciatic nerve of the anesthetized rat was constricted with sutures 3/0. Treatment with 1,3,4-oxadiazole derivative was started a day after surgery and continued until the 14th day. All behavioral studies were executed on day 0, 3rd, 7th, 10th, and 14th. The sciatic nerve and spinal cord were collected for further molecular analysis. The interactions in the form of hydrogen bonding stabilizes the ligand target complex. B3 showed three hydrogen bonds with IL-6. B3, in addition to correcting paw posture/deformation induced by CCI, attenuates hyperalgesia (p < 0.001) and allodynia (p < 0.001). B3 significantly raised the level of GST and GSH in both the sciatic nerve and spinal cord and reduced the LPO and iNOS (p < 0.001). B3 attenuates the pathological changes induced by nerve injury, which was confirmed by H&E staining and IHC examination. B3 down-regulates the over-expression of the inflammatory mediator IL-6 and hence provides neuroprotective effects in CCI-induced pain. The results demonstrate that B3 possess anti-nociceptive and anti-hyperalgesic effects and thus minimizes pain perception and inflammation. The possible underlying mechanism for the neuroprotective effect of B3 probably may be mediated through IL-6.

12.
Circ Res ; 127(10): 1261-1273, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32815777

RESUMO

RATIONALE: Hyperglycemia -induced reactive oxygen species are key mediators of cardiac dysfunction. JunD (Jund proto-oncogene subunit), a member of the AP-1 (activator protein-1) family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to redox state and inflammation in the diabetic heart remains to be elucidated. OBJECTIVE: The present study investigates the role of JunD in hyperglycemia-induced and reactive oxygen species-driven myocardial dysfunction. METHODS AND RESULTS: JunD mRNA and protein expression were reduced in the myocardium of mice with streptozotocin-induced diabetes mellitus as compared to controls. JunD downregulation was associated with oxidative stress and left ventricular dysfunction assessed by electron spin resonance spectroscopy as well as conventional and 2-dimensional speckle-tracking echocardiography. Furthermore, myocardial expression of free radical scavenger superoxide dismutase 1 and aldehyde dehydrogenase 2 was reduced, whereas the NOX2 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 2) and NOX4 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 4) were upregulated. The redox changes were associated with increased NF-κB (nuclear factor kappa B) binding activity and expression of inflammatory mediators. Interestingly, mice with cardiac-specific overexpression of JunD via the α MHC (α- myosin heavy chain) promoter (α MHC JunDtg) were protected against hyperglycemia-induced cardiac dysfunction. We also showed that JunD was epigenetically regulated by promoter hypermethylation, post-translational modification of histone marks, and translational repression by miRNA (microRNA)-673/menin. Reduced JunD mRNA and protein expression were confirmed in left ventricular specimens obtained from patients with type 2 diabetes mellitus as compared to nondiabetic subjects. CONCLUSIONS: Here, we show that a complex epigenetic machinery involving DNA methylation, histone modifications, and microRNAs mediates hyperglycemia-induced JunD downregulation and myocardial dysfunction in experimental and human diabetes mellitus. Our results pave the way for tissue-specific therapeutic modulation of JunD to prevent diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/genética , Epigênese Genética , Hiperglicemia/complicações , Proteínas Proto-Oncogênicas c-jun/genética , Animais , Metilação de DNA , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Código das Histonas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
ESC Heart Fail ; 7(5): 2468-2478, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618141

RESUMO

AIMS: Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi-vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole-genome methyl-binding domain-capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. METHODS AND RESULTS: We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl-binding domain-capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non-coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes: HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2. CONCLUSIONS: We demonstrate the utility of methyl-binding domain-capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi-vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.


Assuntos
Doença da Artéria Coronariana , Insuficiência Cardíaca , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Humanos , Masculino , Projetos Piloto
14.
Mol Cytogenet ; 13: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31908654

RESUMO

BACKGROUND: Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue. The literature offers few expression studies on SDS. RESULTS: We report the expression analysis of bone marrow (BM) cells of patients with SDS in relation to normal karyotype or to the presence of clonal chromosome anomalies: del (20)(q) (five cases), i (7)(q10) (one case), and other anomalies (two cases). The study was performed using the microarray technique considering the whole transcriptome (WT) and three gene subsets selected as relevant in BM functions. The expression patterns of nine healthy controls and SDS patients with or without chromosome anomalies in the bone marrow showed clear differences. CONCLUSIONS: There is a significant difference between gene expression in the BM of SDS patients and healthy subjects, both at the WT level and in the selected gene sets. The deletion del (20)(q), with the EIF6 gene consistently lost, even in patients with the smallest losses of material, changes the transcription pattern: a low proportion of abnormal cells led to a pattern similar to SDS patients without acquired anomalies, whereas a high proportion yields a pattern similar to healthy subjects. Hence, the benign prognostic value of del (20)(q). The case of i (7)(q10) showed a transcription pattern similar to healthy subjects, paralleling the positive prognostic role of this anomaly as well.

15.
Asian Pac J Trop Med ; 10(11): 1037-1042, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29203098

RESUMO

Infection due to hepatitis C virus (HCV) is a major cause of fibrosis and hepatocellular carcinoma in Pakistan. In the current review, pattern of HCV genotypes and subtypes in Khyber Pakhtunkhwa province was ascertained in light of the available literature. After thorough analysis, genotype 3 (58.27%) was determined to be the leading HCV genotype, followed by genotypes 2 (12.39%), 1 (9.54%) and 4 (0.86%). The proportions of genotypes 5 and 6 were recorded as 0.09% and 0.22% respectively. Subtype wise, 3a accounted for 48.67%, followed by subtype 2a (10.91%), 3b (9.43%), 1a (5.84%), 1b (3.66%), 2b (1.45%) and genotype 4 with its undefined subtypes contributed a portion of 0.86%. The cumulative share of subtypes 1c, 2c, 3c, 5a and 6a was less than 1%. In 11.51% cases, the subtype was untypeable while in 7.17% cases mixed subtypes were recorded. Gender wise, proportions of most HCV subtypes were marginally higher among males as compared to females. On the basis of studied groups, 3a was pervasive among all groups except in intravenous drug users where 2a was the major HCV subtype. Similarly, based on various geographical locations (provincial divisions), subtype 3a revealed a ubiquitous distribution. Conclusively, HCV 3a persists to be the principal subtype across the province of Khyber Pakhtunkhwa. The considerable number of untypeable subtypes in most studies urges for an improved genotyping system on the basis of local sequence data and practice of sequencing for determination of underlying subtype in untypeable cases. Further, studies on identification of subtypes transmission pattern are imperative for assessment of transmission origin and reinforcement of efficient control strategies. In addition, the current review emphasizes the need of attention toward HCV risk groups and ignored southern side of Khyber Pakhtunkhwa province for better holistic understanding of HCV genotype distribution pattern in the province.

17.
Saudi Med J ; 30(1): 50-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19139773

RESUMO

OBJECTIVE: To determine the outcome of various techniques of vascular repair in terms of repair related complications and limb salavagibility. METHODS: From January 1999 to December 2005, this retrospective study was conducted in the Department of General Surgery, Lahore General Hospital, Lahore, Pakistan. The patients, who underwent various surgical interventions for extremity vascular trauma, were included in this study. Those, who underwent primary amputation due to non-salvageable injuries or who presented with late complications of vascular injuries were excluded. RESULTS: Ninety-three patients underwent different surgical procedures for extremity vascular trauma. Majority of the patients were young, (mean, 29.4 years) male (91.3%). Penetrating trauma was the most common mode of injury (77.4%). The median time interval between injury and repair was 4.5 hours. Superficial femoral artery was the most frequently injured artery (26.8%). Graft repair was carried out in 41 patients (46.6%), while (34.1%) of the patients had end-to-end anastomosis. Wound infection was the most common complication (18.2%). Seven patients (7.5%) had secondary amputations and 3 (3.2%) died from other injuries. Vascular reconstruction was successful in 89.3% of the patients. CONCLUSION: Early revascularization by employing simple repair or interposition autogenous vein graft repair results in successful limb salvage with acceptable complication rate.


Assuntos
Vasos Sanguíneos/lesões , Extremidades/irrigação sanguínea , Adulto , Feminino , Humanos , Infecções/complicações , Masculino , Paquistão , Ferimentos e Lesões/complicações , Ferimentos e Lesões/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA