Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Probl Cardiol ; 49(2): 102222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000567

RESUMO

Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Infarto do Miocárdio , Humanos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Exercício Físico
2.
Front Chem ; 10: 1066958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451932

RESUMO

Chromium-free materials as eco-friendly coatings with higher corrosion resistance are crucial in various industrial processes. Herein, we report the deposition of cerium-based conversion, a chromium-free, eco-friendly chemical conversion coating for aluminum alloy 6101, by the dip coating method. Immersion in cerium salt precursors assisted with hydrogen peroxide was performed for the deposition of cerium-based conversion coatings on aluminum alloy 6101 at different bathing temperatures. The electrochemical corrosion behavior was assessed in an alkaline solution of sodium hydroxide (pH 11), including mass loss measurements, free corrosion risk, polarization, and electrochemical impedance spectroscopy. X-ray diffraction and photoelectron spectroscopy analysis showed that the coatings were composed of Ce (III) and Ce (IV) oxides. Surface modifications and surface degradation of the coating and substrate after immersion in corrosive media were analyzed by scanning electron microscopy. Additionally, energy dispersive scanning analysis demonstrated the elemental composition before and after corrosion of the cerium salt conversion-based coating. The results demonstrated that selectively deposited cerium-based conversion coatings improved the corrosion resistance by up to 96% in a strong corrosive alkaline media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA