Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(6): e1056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856995

RESUMO

Sequence changes in viral genomes generate protein sequence diversity that enables viruses to evade the host immune system, hindering the development of effective preventive and therapeutic interventions. The massive proliferation of sequence data provides unprecedented opportunities to study viral adaptation and evolution. An alignment-free approach removes various restrictions posed by an alignment-dependent approach for studying sequence diversity. The publicly available tool, UNIQmin, offers an alignment-free approach for studying viral sequence diversity at any given rank of taxonomy lineage and is big data ready. The tool performs an exhaustive search to determine the minimal set of sequences required to capture the peptidome diversity within a given dataset. This compression is possible through the removal of identical sequences and unique sequences that do not contribute effectively to the peptidome diversity pool. Herein, we describe a detailed four-part protocol utilizing UNIQmin to generate the minimal set for the purpose of viral diversity analyses, alignment-free at any rank of the taxonomy lineage, using the recent global public health threat Monkeypox virus (MPX) sequence data as a case study. The protocol enables a systematic bioinformatics approach to study sequence diversity across taxonomic lineages, which is crucial for our future preparedness against viral epidemics. This is particularly important when data are abundant, freely available, and alignment is not an option. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Tool installation and input file preparation Basic Protocol 2: Generation of a minimal set of sequences for a given dataset Basic Protocol 3: Comparative minimal set analysis across taxonomic lineage ranks Basic Protocol 4: Factors affecting the minimal set of sequences.


Assuntos
Biologia Computacional , Biologia Computacional/métodos , Proteínas Virais/genética , Genoma Viral/genética , Software , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação , Peptídeos/química
2.
Mol Cancer Res ; 22(1): 7-20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906201

RESUMO

Humans are in a complex symbiotic relationship with a wide range of microbial organisms, including bacteria, viruses, and fungi. The evolution and composition of the human microbiome can be an indicator of how it may affect human health and susceptibility to diseases. Microbiome alteration, termed as dysbiosis, has been linked to the pathogenesis and progression of hematological cancers. A variety of mechanisms, including epithelial barrier disruption, local chronic inflammation response trigger, antigen dis-sequestration, and molecular mimicry, have been proposed to be associated with gut microbiota. Dysbiosis may be induced or worsened by cancer therapies (such as chemotherapy and/or hematopoietic stem cell transplantation) or infection. The use of antibiotics during treatment may also promote dysbiosis, with possible long-term consequences. The aim of this review is to provide a succinct summary of the current knowledge describing the role of the microbiome in hematological cancers, as well as its influence on their therapies. Modulation of the gut microbiome, involving modifying the composition of the beneficial microorganisms in the management and treatment of hematological cancers is also discussed. Additionally discussed are the latest developments in modeling approaches and tools used for computational analyses, interpretation and better understanding of the gut microbiome data.


Assuntos
Microbioma Gastrointestinal , Neoplasias Hematológicas , Microbiota , Humanos , Disbiose/microbiologia , Disbiose/terapia , Inflamação
3.
Diagnostics (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980325

RESUMO

BACKGROUND: Glioblastoma poses an inevitable threat to patients despite aggressive therapy regimes. It displays a great level of molecular heterogeneity and numerous substitutions in several genes have been documented. Next-generation sequencing techniques have identified various molecular signatures that have led to a better understanding of the molecular pathogenesis of glioblastoma. In this limited study, we sought to identify genetic variants in a small number of rare patients with aggressive glioblastoma. METHODS: Five tumor tissue samples were isolated from four patients with rapidly growing glioblastoma. Genomic DNA was isolated and whole exome sequencing was used to study protein-coding regions. Generated FASTQ files were analyzed and variants were called for each sample. Variants were prioritized with different approaches and functional annotation was applied for the detrimental variants. RESULTS: A total of 49,780 somatic variants were identified in the five glioblastoma samples studied, with the majority as missense substitutions. The top ten genes with the highest number of substitutions were MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1. Notably, variant prioritization after annotation indicated that the MTCH2 (Chr11: 47647265 A>G) gene sequence change was putative deleterious in all of the aggressive tumor samples. CONCLUSION: The MTCH2 (Chr11: 47647265 A>G) gene substitution was identified as putative deleterious in highly aggressive glioblastomas, which merits further investigation. Moreover, a high tumor mutation burden was observed, with a signature of the highest substitutions in MUC3A, MUC4, MUC6, OR4C5, PDE4DIP, AHNAK2, OR4C3, ZNF806, TTN, and RP1L1 genes. The findings provide critical, initial data for the further rational design of genetic screening and diagnostic approaches against aggressive glioblastoma.

4.
Front Immunol ; 14: 1265469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318504

RESUMO

The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.


Assuntos
Glioma , Sarcoma de Ewing , Adolescente , Criança , Humanos , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos HLA/genética , Antígenos HLA-B/genética , Sarcoma de Ewing/genética , Animais , Adulto Jovem
5.
J Gen Virol ; 98(12): 2993-3007, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29182510

RESUMO

Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.


Assuntos
Células Endoteliais/virologia , Endotélio Vascular/virologia , Interações Hospedeiro-Patógeno , Carga Viral/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/virologia , Caderinas/genética , Caderinas/imunologia , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL20/genética , Quimiocina CCL20/imunologia , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/imunologia , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Claudina-1/genética , Claudina-1/imunologia , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Derme/citologia , Derme/imunologia , Derme/virologia , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Especificidade de Órgãos , Permeabilidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Retina/citologia , Retina/imunologia , Retina/virologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia , Internalização do Vírus , Proteína da Zônula de Oclusão-1/genética
6.
Int J Angiol ; 24(1): 41-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27053915

RESUMO

African trypanosomes are tsetse fly transmitted protozoan parasites responsible for human African trypanosomiasis, a disease characterized by a plethora of neurological symptoms and death. How the parasites under microvascular shear stress (SS) flow conditions in the brain cross the blood-brain barrier (BBB) is not known. In vitro studies using static models comprised of human brain microvascular endothelial cells (BMEC) show that BBB activation and crossing by trypanosomes requires the orchestration of parasite cysteine proteases and host calcium-mediated cell signaling. Here, we examine BMEC barrier function and the activation of extracellular signal-regulated kinase (ERK)1/2 and ERK5, mitogen-activated protein kinase family regulators of microvascular permeability, under static and laminar SS flow and in the context of trypanosome infection. Confluent human BMEC were cultured in electric cell-substrate impedance sensing (ECIS) and parallel-plate glass slide chambers. The human BMEC were exposed to 2 or 14 dyn/cm(2) SS in the presence or absence of trypanosomes. Real-time changes in transendothelial electrical resistance (TEER) were monitored and phosphorylation of ERK1/2 and ERK5 analyzed by immunoblot assay. After reaching confluence under static conditions human BMEC TEER was found to rapidly increase when exposed to 2 dyn/cm(2) SS, a condition that mimics SS in brain postcapillary venules. Addition of African trypanosomes caused a rapid drop in human BMEC TEER. Increasing SS to 14 dyn/cm(2), a condition mimicking SS in brain capillaries, led to a transient increase in TEER in both control and infected human BMEC. However, no differences in ERK1/2 and ERK5 activation were found under any condition tested. African trypanosomiasis alters BBB permeability under low shear conditions through an ERK1/2 and ERK5 independent pathway.

7.
DNA Repair (Amst) ; 25: 84-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25497329

RESUMO

SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.


Assuntos
DNA Polimerase III/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Células Cultivadas , Sítios Frágeis do Cromossomo , DNA/biossíntese , DNA/metabolismo , DNA Polimerase III/genética , DNA de Cadeia Simples/metabolismo , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteômica , Proteína de Replicação A/metabolismo , Fase S , Estresse Fisiológico/genética
8.
PLoS One ; 7(12): e52215, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284941

RESUMO

BACKGROUND: Dengue is an important medical problem, with symptoms ranging from mild dengue fever to severe forms of the disease, where vascular leakage leads to hypovolemic shock. Cytokines have been implicated to play a role in the progression of severe dengue disease; however, their profile in dengue patients and the synergy that leads to continued plasma leakage is not clearly understood. Herein, we investigated the cytokine kinetics and profiles of dengue patients at different phases of illness to further understand the role of cytokines in dengue disease. METHODS AND FINDINGS: Circulating levels of 29 different types of cytokines were assessed by bead-based ELISA method in dengue patients at the 3 different phases of illness. The association between significant changes in the levels of cytokines and clinical parameters were analyzed. At the febrile phase, IP-10 was significant in dengue patients with and without warning signs. However, MIP-1ß was found to be significant in only patients with warning signs at this phase. IP-10 was also significant in both with and without warning signs patients during defervescence. At this phase, MIP-1ß and G-CSF were significant in patients without warning signs, whereas MCP-1 was noted to be elevated significantly in patients with warning signs. Significant correlations between the levels of VEGF, RANTES, IL-7, IL-12, PDGF and IL-5 with platelets; VEGF with lymphocytes and neutrophils; G-CSF and IP-10 with atypical lymphocytes and various other cytokines with the liver enzymes were observed in this study. CONCLUSIONS: The cytokine profile patterns discovered between the different phases of illness indicate an essential role in dengue pathogenesis and with further studies may serve as predictive markers for progression to dengue with warning signs.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Dengue/sangue , Dengue/patologia , Adolescente , Adulto , Idoso , Quimiocina CCL4/sangue , Quimiocina CXCL10/sangue , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Fator Estimulador de Colônias de Granulócitos/sangue , Humanos , Interleucina-12/sangue , Interleucina-5/sangue , Interleucina-7/sangue , Masculino , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto Jovem
9.
PLoS One ; 5(1): e8574, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20052293

RESUMO

This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d) and HLA-DR4 (DRA1*0101, DRB1*0401) transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag) chimera antigen. Three immunization protocols were compared: 1) primary subcutaneous immunization with 1x10(5) immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2) primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3) immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a) the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b) the value of HLA transgenic mice as a model system for the identification and evaluation of epitope-based vaccine strategies, and c) the application of variability analysis across reported sequences in public databases for selection of historically conserved HIV epitopes as vaccine targets.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , DNA/administração & dosagem , Células Dendríticas/metabolismo , Epitopos/imunologia , Produtos do Gene gag/genética , Antígeno HLA-DR4/imunologia , Plasmídeos , Sequência de Aminoácidos , Animais , Células Cultivadas , Eletroporação , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Proteínas Ligadas por GPI , HIV-1/imunologia , Antígeno HLA-DR4/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Dados de Sequência Molecular
10.
PLoS One ; 4(4): e5352, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19401763

RESUMO

West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.


Assuntos
Proteínas Virais/genética , Vírus do Nilo Ocidental/genética , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Sequência Conservada , Bases de Dados de Proteínas , Epitopos de Linfócito T/genética , Evolução Molecular , Variação Genética , Antígenos HLA , Humanos , Dados de Sequência Molecular , Proteoma , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade
11.
PLoS Negl Trop Dis ; 2(8): e272, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18698358

RESUMO

BACKGROUND: Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses. Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted. RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and therapeutic purposes. METHODOLOGY/PRINCIPAL FINDINGS: We describe a large-scale identification and analysis of evolutionarily highly conserved amino acid sequences of the entire dengue virus (DENV) proteome, with a focus on sequences of 9 amino acids or more, and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI Entrez protein database in 2005 (9,512 sequences) and again in 2007 (12,404 sequences). Forty-four (44) sequences (pan-DENV sequences), mainly those of nonstructural proteins and representing approximately 15% of the DENV polyprotein length, were identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 ( approximately 77%) were present in >or=95% of sequences of each DENV type, and 27 ( approximately 61%) were conserved in other Flaviviruses. The frequencies of variants of the pan-DENV sequences were low (0 to approximately 5%), as compared to variant frequencies of approximately 60 to approximately 85% in the non pan-DENV sequence regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained numerous predicted human leukocyte antigen (HLA) supertype-restricted peptide sequences, and 26 contained T-cell determinants identified by studies with HLA-transgenic mice and/or reported to be immunogenic in humans. CONCLUSIONS/SIGNIFICANCE: Forty-four (44) pan-DENV sequences of at least 9 amino acids were highly conserved and identical in 80% or more of all recorded DENV sequences, and the majority were found to be immune-relevant by their correspondence to known or putative HLA-restricted T-cell determinants. The conservation of these sequences through the entire recorded DENV genetic history supports their possible value for diagnosis, prophylactic and/or therapeutic applications. The combination of bioinformatics and experimental approaches applied herein provides a framework for large-scale and systematic analysis of conserved and variable sequences of other pathogens, in particular, for rapidly mutating viruses, such as influenza A virus and HIV.


Assuntos
Vírus da Dengue/imunologia , Vírus da Dengue/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Camundongos , Camundongos Transgênicos
12.
Redox Rep ; 11(4): 159-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16984738

RESUMO

The study was conducted to assess the magnitude of oxidative stress and lung function abnormalities in 34 male pesticide sprayers on exposure to pesticides in mango plantations. Biochemical studies on blood antioxidant enzymes revealed an unchanged glutathione level and increased level of malondialdehyde (P < 0.001), which indicates that pesticide sprayers may have suffered from oxidative stress. Decreased acetyl-cholinesterase levels (P < 0.001) in sprayers compared to the controls suggest inhibition of cholinesterase activity. The present study shows that pesticide toxicity might lead to oxidative stress and airway narrowing resulting in decreased peak expiratory flow rate.


Assuntos
Obstrução das Vias Respiratórias/fisiopatologia , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo , Praguicidas/intoxicação , Adolescente , Adulto , Obstrução das Vias Respiratórias/sangue , Obstrução das Vias Respiratórias/etiologia , Antioxidantes/metabolismo , Colinesterases/sangue , Estudos Transversais , Glutationa/sangue , Humanos , Masculino , Malondialdeído/sangue , Resíduos de Praguicidas/sangue
13.
Nucleic Acids Res ; 33(Web Server issue): W172-9, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980449

RESUMO

MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules (proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability (area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets--termed T-cell epitope hotspots. MULTIPRED is available at http://antigen.i2r.a-star.edu.sg/multipred/.


Assuntos
Biologia Computacional/métodos , Epitopos de Linfócito T/química , Antígenos HLA-A/metabolismo , Antígenos HLA-DR/metabolismo , Peptídeos/química , Peptídeos/imunologia , Software , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Internet , Cadeias de Markov , Redes Neurais de Computação , Peptídeos/metabolismo , Interface Usuário-Computador
14.
Nucleic Acids Res ; 32(Web Server issue): W350-5, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215409

RESUMO

CysView is a web-based application tool that identifies and classifies proteins according to their disulfide connectivity patterns. It accepts a dataset of annotated protein sequences in various formats and returns a graphical representation of cysteine pairing patterns. CysView displays cysteine patterns for those records in the data with disulfide annotations. It allows the viewing of records grouped by connectivity patterns. CysView's utility as an analysis tool was demonstrated by the rapid and correct classification of scorpion toxin entries from GenPept on the basis of their disulfide pairing patterns. It has proved useful for rapid detection of irrelevant and partial records, or those with incomplete annotations. CysView can be used to support distant homology between proteins. CysView is publicly available at http://research.i2r.a-star.edu.sg/CysView/.


Assuntos
Cisteína/análise , Proteínas/classificação , Software , Gráficos por Computador , Dissulfetos/química , Internet , Proteínas/química , Venenos de Escorpião/química , Venenos de Escorpião/classificação , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA