Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21646, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058652

RESUMO

Nanoparticles (NPs) have gained considerable interest among researchers in the field of plant biology, particularly in the agricultural sector. Among the numerous NPs, the individual application of silicon (Si) or titanium (Ti), in their oxide forms, had a positive influence on growth, physiochemical and yield attributes of plants. However, the synergetic application of both these NPs has not been studied yet. Therefore, the current study was aimed to investigate the effect of combined application of silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs on the growth characters, physiological parameters, and essential oil quality and production of Coleus aromatics Benth. Aqueous solutions of nanoparticles were applied to the foliage of the plants at varying combinations (Si50+Ti50, Si100+Ti50, Si100+Ti100, Si200+Ti100, Si100+Ti200 and Si200+Ti200 mg L-1). Various morpho-physiological, biochemical and yield attributes were assessed at 120 days after planting. The results demonstrated that both Si and Ti NPs improved the growth and photosynthetic efficiency in a dose dependent manner. The best results were obtained by the combined application of Si100+Ti100 mg L-1, and thereafter, the values declined progressively. The maximum improvement in fresh weight (39.5 %) and dry weight (40.8 %) of shoot, fresh weight (45.7 %) and dry weight (49.4 %) of root was observed as compared to respective controls. Moreover, the exogenous application of Si100+Ti100 mg L-1 increased photosynthetic attributes such as total content of chlorophyll (41.7 %), carotenoids (43.7 %), chlorophyll fluorescence (7.1 %), and carbonic anhydrase (23.8 %). All of these contributed to the highest accumulation in the content (129.0 %) and yield (215.5 %) of essential oil (EO), in comparison to the control. Thus, results encouraged the use of SiO2 and TiO2 NPs to be applied in combined form to boost the essential oil production of Coleus aromaticus. The findings of this study may serve agronomists to determine the optimal concentrations of NPs for enhanced production of bioactive compounds with a wide range of industrial applications.

2.
Plant Physiol Biochem ; 202: 107981, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639982

RESUMO

Nickel (Ni) at a toxic level (80 mg kg-1 of soil) adversely affects the crop performance of fenugreek (Trigonella foenum-graecum L.). Melatonin (MEL), a potent plant growth regulator, is ascribed to offer promising roles in heavy metal stress alleviation. In this study, different doses viz. 0, 25, 50, 75 and 100 µM of MEL were administered to plants through foliage under normal and Ni-stress conditions. The experiment unveiled positive roles of MEL in enhancing root-shoot lengths, fresh-dry weights, seed yield and restoring photosynthetic efficiency assessed in terms of higher Fv/Fm, YII, qP, and lower NPQ values in plants exposed to Ni (80 mg kg-1). MEL supplementation (at 75 µM) effectively restricted Ni accumulation and regulated oxidative stress via modulation of MDA, O2-, H2O2 and NO generation, most prominently. Besides, MEL at 75 µM more conspicuously perked up the activities of antioxidant enzymes like SOD, POX, CAT and APX by 15.7, 20.0, 14.5 and 16.5% higher than the Ni-exposed plants for effective ROS scavenging. Likewise, MEL at 75 µM also efficiently counteracted Ni-generated osmotic stress, through an upscaled accumulation of proline (19.6%) along with the enhancement in the concentration of total phenols (13.6%), total tannins (11.2%), total flavonoids (25.5%) and total alkaloids (19.2%) in plant's leaves. Furthermore, under 80 mg kg-1 Ni stress, MEL at 75 µM improved the seed's trigonelline content by 40.1% higher compared to Ni-disturbed plants, upgrading the pharmacological actions of the plant. Thus, the present study deciphers the envisaged roles of MEL in the alleviation of Ni stress in plants to enhance overall crop productivity.


Assuntos
Alcaloides , Melatonina , Trigonella , Regulação para Cima , Antioxidantes , Melatonina/farmacologia , Níquel/toxicidade , Peróxido de Hidrogênio , Metais , Suplementos Nutricionais
3.
Environ Res ; 236(Pt 2): 116851, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558115

RESUMO

Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.


Assuntos
Nanopartículas , Óleos Voláteis , Antioxidantes/metabolismo , Cobre/toxicidade , Espécies Reativas de Oxigênio , Dióxido de Silício/toxicidade , Óleos Voláteis/toxicidade , Nanopartículas/toxicidade , Homeostase , Peróxido de Hidrogênio , Estresse Oxidativo
4.
Plant Sci ; 334: 111754, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321306

RESUMO

Soil contamination by heavy metals poses a significant environmental challenge, as the practical implementation of existing remediation technologies in the field has encountered numerous obstacles. This has necessitated the requirement of finding alternate solutions to reduce the harm caused to plants. In this study, nitric oxide (NO) was investigated for its potential to reduce cadmium (Cd) toxicity in A. annua plants. Although NO plays a vital role in the growth and development of plants, information on its role in reducing abiotic stress in plants is limited. A. annua plants were exposed to 20 and 40 mg/kg Cd regardless of the addition of exogenous sodium nitroprusside (SNP), a NO donor, at 200 µM concentration. Results showed that SNP treatment improved plant growth, photosynthesis, chlorophyll fluorescence, pigment content, and artemisinin production while reducing Cd accumulation and improving membrane stability in A. annua during Cd stress. The results demonstrated that NO can effectively reverse Cd-induced damage in A. annua by modulating the antioxidant system, maintaining redox homeostasis, and improving photosynthetic performance and different fluorescence parameters such as Fv/Fm, ФPSII, and ETR. The supplementation of SNP caused a substantial improvement in chloroplast ultrastructure, stomatal behavior, and different attributes relate to glandular secretory trichomes, which in turn increased artemisinin production; 14.11 % in plants exposed to Cd stress of 20 mg/kg. Our findings highlight that NO could be useful in mediating the repair of Cd-induced damage to A. annua, and suggest that it may play a critical role in plant signaling networks, improving plant adaptability to Cd stress. The results have important implications for developing new strategies to mitigate the negative impacts of environmental contaminants on plant health, and ultimately, the ecosystem.


Assuntos
Artemisia annua , Artemisininas , Antioxidantes , Óxido Nítrico , Cádmio/toxicidade , Ecossistema
5.
Front Plant Sci ; 14: 1129130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152142

RESUMO

Introduction: The current study was carried out with the hypothesis that foliar application of plant-derived smoke water (PDSW) and karrikinolide (KAR1) might enhanced the plant growth, physiology, and essential oil production of the Mentha arvensis L. Karrikinolide (KAR1) is one of the most important bioactive constituents of PDSW. Methods: Mint (Mentha arvensis L.) was grown in natural conditions in the net-house. Different concentrations of PDSW (1:125, 1:250, 1:500 and 1:1000 v/v) and KAR1 (10-9 M, 10-8 M, 10-7 M and 10-6 M) were used as foliar-spray treatments, using double-distilled water as control. The PDSW was prepared by burning the dried wheat-straw that acted as a growth-promoting substance. Results: Foliar-spray treatment 1:500 v/v of PDSW and 10-8 M of KAR1 proved optimal for enhancing all morphological, physiological, and essential-oil yield related parameters. In comparison with the control, 1:500 v/v of PDSW and 10-8 M of KAR1 increased significantly (p ≤ 0.05) the height of mint plant (19.23% and 16.47%), fresh weight (19.30% and 17.44%), dry weight (35.36% and 24.75%), leaf area (18.22% and 17.46%), and leaf yield per plant (28.41% and 23.74%). In addition, these treatments also significantly increased the photosynthetic parameters, including chlorophyll fluorescence (12.10% and 11.41%), total chlorophyll content (25.70% and 20.77%), and total carotenoid content (29.77% and 27.18%). Likewise, 1:500 v/v of PDSW and 10-8 M of KAR1 significantly increased the essential-oil content (37.09% and 32.25%), essential oil productivity per plant (72.22% and 66.66%), menthol content (29.94% and 25.42%), menthyl acetate content (36.90% and 31.73%), and menthone content (44.38% and 37.75%). Furthermore, the TIC chromatogram of the GCMS analysis revealed the presence of 34 compounds, 12 of which showed major peak areas. Discussion: Treatment 1: 500 v/v of PDSW proved better than the treatment 10-8 M of KAR1 with regard to most of the parameters studied. The outcome of the study can be used as a recommendation tool for agricultural and horticultural crops, since it costs much lesser than that of KAR1. In fact, the foliar application of PDSW proved economical and played bioactive role at very low concentrations.

6.
Plant Sci ; 332: 111703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031743

RESUMO

Nickel (Ni) contamination of farming soil has become currently a recurring global menace to agriculture crop productivity. The purpose of the present study was to investigate the putative contributions of abscisic acid (ABA) to extemporize Ni tolerance in Trigonella foenum-graecum L. (fenugreek) plants. The outcomes of this study exposed that exogenous supplementation of ABA at 10, 20, 40 and 80 µM considerably enhanced the growth and physiological attributes of fenugreek under 80 mg Ni kg-1 soil, however, 40 µM of ABA exhibited the best results under normal and Ni-stressed conditions. ABA-mediated Ni tolerance was marked by reductions in Ni accumulation and consequent lowering of reactive oxygen species (ROS) like hydrogen peroxide and superoxide radicals. Contrarily, NO (nitric oxide) level increased in response to ABA application under Ni stress conditions, accompanied by promoted antioxidant activities through improved levels of secondary metabolites, proline, and perked-up ROS-detoxification enzymes activities. Exogenous ABA at 40 µM concentration applied to Ni-exposed plants (80 mg Ni kg-1 soil) improved the total content of alkaloids, phenolics, flavonoids and tannins by 14.3%, 10.2%, 15.4% and 7.0%, respectively, over Ni-stressed plants alone. Additionally, seed trigonelline content imparting several pharmacological actions to the fenugreek plant exhibited a remarkable escalation upto 3.6 and 2.6 mg g-1 DW under '40 µM ABA' and '40 µM ABA + 80 mg Ni kg-1 soil' treatments, respectively. The findings of the study suggest that ABA plays a key role in enhancing the overall performance of the fenugreek crop under excessive Ni stress.


Assuntos
Metais Pesados , Trigonella , Antioxidantes/metabolismo , Níquel/metabolismo , Ácido Abscísico/metabolismo , Trigonella/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Solo
7.
Front Plant Sci ; 14: 1116769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875580

RESUMO

Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.

8.
J Hazard Mater ; 448: 130899, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860066

RESUMO

Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of strigolactones (SLs) in alleviating cadmium (Cd) phytotoxicity in Artemisia annua plants were investigated during this study. Strigolactones play a vital role during plant growth and development due to their complex interplay during a plethora of biochemical processes. However, information on the potential of SLs to elicit abiotic stress signaling and trigger physiological modifications in plants is limited. In order to decipher the same, A. annua plants were exposed to different concentrations of Cd (20 and 40 mg kg-1), with or without the supplementation of exogenous SL (GR24, a SL analogue) at 4 µM concentration. Under Cd stress, excess Cd accumulation resulted in reduced growth, physio-biochemical traits, and artemisinin content. However, the follow-up treatment of GR24 maintained a steady state equilibrium between reactive oxygen species and antioxidant enzymes, improved chlorophyll fluorescence parameters such as Fv/Fm, ФPSII, and ETR for improved photosynthesis, enhanced chlorophyll content, maintained chloroplast ultrastructure, improved the glandular trichome (GT) attributes and artemisinin production in A. annua. Moreover, it also resulted in improved membrane stability, reduced Cd accumulation, and regulated the behaviour of stomatal apertures for better stomatal conductance under Cd stress. The results of our study suggest that GR24 could be highly effective in alleviating Cd-induced damages in A. annua. It acts via the modulation of the antioxidant enzyme system for redox homeostasis, protection of the chloroplasts and pigments for improved photosynthetic performance, and improved GT attributes for enhanced artemisinin production in A. annua.


Assuntos
Artemisia annua , Artemisininas , Cádmio , Espécies Reativas de Oxigênio , Antioxidantes , Transdução de Sinais , Clorofila
9.
Front Plant Sci ; 13: 903954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783975

RESUMO

The cultivation of lemongrass (Cymbopogon flexuosus) crop is dominated by its medicinal, food preservative, and cosmetic demands. The growing economy of the lemongrass market suggests the immense commercial potential of lemongrass and its essential oil. Nevertheless, the continuous increase of the saline regime threatens the growth and productivity of most of the plant life worldwide. In this regard, the present experiment explores the salt sensitiveness of the lemongrass crop against five different levels of salt stress. Metabolomic analyses suggest that lemongrass plants can effectively tolerate a salt concentration of up to 80 mM and retain most of their growth and productivity. However, extreme NaCl concentrations (≥160 mM) inflicted significant (α = 0.05) damage to the plant physiology and exhausted the lemongrass antioxidative defence system. Therefore, the highest NaCl concentration (240 mM) minimised plant height, chlorophyll fluorescence, and essential oil production by up to 50, 27, and 45%. The overall data along with the salt implications on photosynthetic machinery and ROS metabolism suggest that lemongrass can be considered a moderately sensitive crop to salt stress. The study, sensu lato, can be used in reclaiming moderately saline lands with lemongrass cultivation converting such lands from economic liability to economic asset.

10.
Chemosphere ; 288(Pt 2): 132447, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34627816

RESUMO

Often mint (Mentha arvensis L.) faces unforeseen limitations, resulting in a low yield and quality of essential oil (EO), especially menthol content necessitating the need to explore the potential of modern technology to overcome this predicament. One of such techniques is the use of nanomaterials. The bulk (un-nanotized) form of PGRs (plant growth regulators) has been considered as a potential tool for crop improvement. Utilizing the top-down approach of nanotization, bulk PGR kinetin was ball-milled to the nano-scale range. A pot experiment was conducted on mint applying bulk- and nano-kinetin through foliar application. The concentrations of spray-treatments included 0 (de-ionized water, control), 10, 20, and 30 µM of bulk-as well as nanotized-kinetin. Both forms of kinetin manifested their patterns in the plant. Treatment N2 (20 µM of nanotized-kinetin) excelled in all other treatments for most of the parameters studied. As compared with De-ionized water-spray control, it resulted in the highest improvement in photosynthetic efficiency, Carbonic anhydrase activity, EO content (46.6 %), EO yield (50.8 %), and density as well as the diameter of PGTs (peltate glandular trichomes). Treatment N2, equalled by treatment B2 (20 µM of bulk-kinetin), maximally improved the menthol yield. The highest content and yield of EO, as a result of N2 application, was attributed to its manifestation in terms of the improved photosynthetic machinery, enzyme activity, and vigour (density and diameter) of PGTs. Since treatment N2 increased the most desirable EO-traits, viz. content and yield of EO along with yield of menthol, it might be recommended for successful production of mint.


Assuntos
Mentha , Óleos Voláteis , Cinetina , Mentol , Reguladores de Crescimento de Plantas
11.
Chemosphere ; 276: 130153, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33714878

RESUMO

Boron (B) toxicity is a notable abiotic hindrance that restricts crop productivity by disturbing several physiological and biochemical processes in plants. This study was aimed to elucidate the role of salicylic acid (SA) in conferring tolerance to B stress in Mentha arvensis and Cymbopogon flexuosus. Boron toxicity led to a considerable decrease in shoot height and root length, fresh and dry mass of shoot and root, and physiological and biochemical parameters. However, exogenously applied SA relieved the adverse effects caused by B toxicity and led to an increase in growth parameters under B stress and non-stress conditions. The treatment of B resulted in its increased accumulation in roots and shoots of both the plants which, in turn, caused oxidative damage as evident by increased content of malondialdehyde and catalase, peroxidase, superoxide dismutase and glutathione reductase enzyme activities. However, exogenous SA supply significantly affected antioxidant enzyme activities and protected the plants from excess B. Moreover, the essential oil content of two selected plants declined under B toxicity and significantly enhanced in SA-treated stressed plants. The contents of menthol and menthyl acetate in M. arvensis were lowered in B stressed plants which significantly improved in SA treated B-stressed and in their respective SA alone treatment. Similarly, citral-A and citral-B content of C. flexuosus declined under B toxicity, however, SA reversed the negative effects of B toxicity on essential oil components. This assessment stipulated the promising role of exogenously applied SA in alleviating B toxicity in M. arvensis and C. flexuosus by improving antioxidant machinery and limiting B uptake which protects the structural integrity of leaves and also helps in increasing essential oil content.


Assuntos
Cymbopogon , Mentha , Óleos Voláteis , Antioxidantes , Boro/toxicidade , Óleos Voláteis/toxicidade , Estresse Oxidativo , Ácido Salicílico/toxicidade , Solo
12.
J Hazard Mater ; 412: 125254, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33550131

RESUMO

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO) which has great economical value due to its numerous medicinal, cosmetic and culinary applications. The present study was conducted on silicon nanoparticles (SiNPs) application to lemongrass with the objective of overall agronomic enhancements. Graded concentrations (50-200 mg L-1) of SiNPs were exogenously applied to lemongrass leaves. The physiological and biochemical analyses revealed that 150 mg L-1 SiNPs is the optimum concentration for lemongrass plants. This concentration triggered photosynthetic variables, gas exchange modules and activities of enzymes involved in EO (geraniol dehydrogenase) and nitrogen (nitrate reductase) metabolism as well as in the antioxidant system (catalase, peroxidase and superoxide dismutase). These SiNPs-induced metabolic changes altogether significantly (p ≤ 0.05) enhanced overall plant growth and yield. Moreover, SiNPs treatments assisted in palliating lipid peroxidation and H2O2 content in lemongrass leaves which added further advantage to plant metabolism. Overall, data indicates SiNPs elicit beneficial effects on lemongrass growth and yield through inducing various physiological and biochemical responses. This renders high possibility that similar objectives could be achieved with SiNPs biotechnological application on further related agronomic crops as well as in diverse industries.


Assuntos
Cymbopogon , Nanopartículas , Óleos Voláteis , Peróxido de Hidrogênio , Silício
13.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052524

RESUMO

The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.

14.
Int J Biol Macromol ; 164: 286-294, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682973

RESUMO

Oligosaccharides derived through irradiation of polysaccharides act as efficient plant elicitors and stimulate responses associated with primary as well as secondary metabolic pathways in plants. Reduced molecular weight together with the structural rearrangement, induce plant growth promotion activity in the polysaccharides after irradiation. In addition to the increased activities of different enzymes involved in photosynthesis and nutrient assimilation, various secondary metabolism enzymes are up-regulated by the leaf-applied oligomers. Oligosaccharide-induced elicitation of different signal transduction cascades leads to the increased biosynthesis of valuable secondary metabolism products in plants. The present review presents a comprehensive approach regarding the irradiation-induced structural changes and molecular weight reduction in polysaccharides and their role in increasing the production of economically valuable secondary products in various medicinally important plants. This review also encompasses the role of oligosaccharides in regulation of plant growth and enzyme activities as well as the signal transduction mechanism involved in the elicitation of secondary metabolites.


Assuntos
Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Polissacarídeos/farmacologia , Metabolismo Secundário/genética , Ativação Enzimática , Redes e Vias Metabólicas , Desenvolvimento Vegetal/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Plantas/efeitos dos fármacos , Plantas/enzimologia , Plantas/metabolismo , Transdução de Sinais
15.
Int J Biol Macromol ; 145: 372-389, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862372

RESUMO

Oligomers derived through irradiation of marine polysaccharides have generated a lot of interest of plant biologists as the application of these molecules has yielded positive results regarding various plant processes. To comprehend the previously established growth-promoting activity of irradiated chitosan (ICH) and to gain insight of the structure-property relationship, gamma rays induced structural changes were analyzed using techniques such as Fourier Transform Infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy, 13C-Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM). Moreover, to study the bioactivity of ICH samples a pot experiment was conducted on citronella grass (Cymbopogon winterianus) to access its response to foliar application of various levels (40, 60, 80 and 100 mg L-1) of ICH in terms of growth, physiological attributes and essential oil (EO) production. The application of ICH at 80 mg L-1(ICH-80) resulted in the maximum values of most of the attributes studied. Due to this treatment, the maximum improvement in the content (29.58%) and yield (90.81%) of EO in Cymbopogon winterianus were achieved. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that ICH-80 also increased the content of citronellal (14.81%) and geraniol (18.15%) of the EO as compared to the control.


Assuntos
Quitosana/efeitos da radiação , Clorofila/agonistas , Cymbopogon/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Monoterpenos Acíclicos/isolamento & purificação , Monoterpenos Acíclicos/metabolismo , Aldeídos/isolamento & purificação , Aldeídos/metabolismo , Carotenoides/agonistas , Carotenoides/metabolismo , Quitosana/farmacologia , Clorofila/biossíntese , Cymbopogon/crescimento & desenvolvimento , Cymbopogon/metabolismo , Raios gama , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
16.
Int J Biol Macromol ; 124: 1069-1079, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521890

RESUMO

In an attempt to gain insights into the possible relationship between the irradiation-mediated molecular weight reduction and structural modification and the growth-promotion activity, characterization of the polysaccharide before and after irradiation was carried out through Fourier Transform Infrared (FT-IR), Ultraviolet-visible (UV-vis) and Nuclear Magnetic Resonance (NMR) spectroscopic studies. Moreover, graded concentrations of irradiated carrageenan (IC) were applied through foliage to assess the performance of peppermint (Mentha piperita L.). Among the various concentrations of IC [0 (control), un-irradiated carrageenan (UC), 40, 80, 120, 160 and 200 mg L-1], the effect of 80 mg L-1 IC established to be most favorable for most of the parameters studied. Rubisco and phenylalanine ammonia lyase activities were maximally enhanced by 65.9% and 35.6% by the application of 80 mg L-1 IC, respectively; as compared to the control and UC. A maximum enrichment in the content (32.8%) and yield (88.3%) of essential oil was noted by the application of 80 mg L-1 IC, respectively. Results of the gas chromatography revealed that the contents of menthol and 1, 8-cineole were increased; however, menthone and menthyl-acetate contents were decreased by the application of IC over the control and UC.


Assuntos
Carragenina/metabolismo , Raios gama , Mentha piperita/metabolismo , Fotossíntese/efeitos da radiação
17.
Int J Biol Macromol ; 105(Pt 1): 1043-1050, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28754623

RESUMO

Over the past decade, radiation-degraded polysaccharides have been used as regulators of growth and development in several crop plants. In quest of the possible reasons of previously established growth-promotion activity of irradiated sodium alginate (ISA), structural parameters of irradiated and un-irradiated sodium alginate were analysed using Ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared spectroscopic (FT-IR) studies to develop an understanding of structure-property relationship. Using foliar application, response to graded concentrations of ISA was tested in terms of yield and quality attributes of spearmint (Mentha spicata L.). Among different concentrations of ISA [0 (control), 40, 80, 120 and 160mgL-1], 80mgL-1 proved to be the optimum foliar-spray treatment for most of the parameters studied including peltate glandular-trichomes density, which was increased from 20 to 44mm-2. Measurements made at 150days after planting revealed that foliar application of ISA at 80mgL-1 increased the content and yield of spearmint essential oil (EO) by 36.0 and 122.6%, respectively, in comparison to the control. Compared to the control, gas chromatography mass spectrometry (GC-MS) analysis revealed an increase of 18.7% in the carvone content and a decrease of 15.7% in limonene content of the spearmint EO.


Assuntos
Alginatos/química , Alginatos/farmacologia , Mentha spicata/efeitos dos fármacos , Mentha spicata/metabolismo , Óleos Voláteis/metabolismo , Tricomas/efeitos dos fármacos , Tricomas/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Glicosilação , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Mentha spicata/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Polimerização
18.
PLoS One ; 12(7): e0180129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708833

RESUMO

Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud.), grown under different water stress regimes [(100% field capacity (FC), 80% FC and 60% FC)], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA). Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol) of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC), irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO) content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP), respectively, as compared to the deionized-water (DW) spray treatment (80% FC+ DW). Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment).


Assuntos
Carragenina/farmacologia , Cymbopogon/efeitos dos fármacos , Óleos Voláteis/análise , Água/metabolismo , Anidrases Carbônicas/metabolismo , Carragenina/química , Carragenina/efeitos da radiação , Cromatografia Gasosa , Cymbopogon/crescimento & desenvolvimento , Cymbopogon/fisiologia , Secas , Raios gama , Nitrato Redutase/metabolismo , Óleos Voláteis/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
19.
Carbohydr Polym ; 112: 134-44, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25129727

RESUMO

Eucalyptus citriodora Hook. is highly valued for its citronellal-rich essential oil (EO) extracted from its leaves. Hence, escalated EO production of eucalyptus is the need of hour. Marine polysaccharides (sodium alginate) are processed through gamma radiation of particular intensity, to obtain the irradiated sodium alginate (ISA). A pot experiment was conducted to study the effect of foliar application of ISA on growth, biochemical, physiological, EO yield and composition of E. citriodora. The treatments were applied as: foliar spray of deionized water only (control), seed soaked with ISA (90 mg L(-1)) and foliar spray of ISA with 30, 60, 120 and 240 mg L(-1). The treatment 6 (spray of ISA at 120 mg L(-1)) showed the highest value for most of the parameters studied. It also enhanced the EO content (33.3%), EO yield (86.7%), citronellal content (63.4%) and citronellal yield (205.5%) as compared to the control.


Assuntos
Alginatos/química , Alginatos/farmacologia , Eucalyptus/química , Eucalyptus/efeitos dos fármacos , Óleos Voláteis/química , Monoterpenos Acíclicos , Aldeídos/análise , Alginatos/efeitos da radiação , Anidrases Carbônicas/metabolismo , Eucalyptus/crescimento & desenvolvimento , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácido Glucurônico/efeitos da radiação , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/efeitos da radiação , Monoterpenos/análise , Nitrato Redutase/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Carbohydr Polym ; 110: 396-404, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24906772

RESUMO

It is now being realized that irradiation products of natural bioactive agents can also be beneficially utilized to impart value addition in agriculture by converting these bioactive agents into more useful form. Polysaccharides, such as sodium alginate, have proven to be wonderful growth promoting substances in their depolymerized form for various plants. Artemisinin has been increasingly popular as an effective and safe alternative therapy against malaria; also proved effective against the highly adaptable malaria parasite, which has already become resistant to many other drugs. The drug artemisinin can be extracted from the leafy tissues of Artemisia annua. Therefore, experiments were conducted with an aim to evaluate artemisinin production and overall plant development though depolymerized sodium alginate application and nutrient supply. In the present study, sodium alginate, irradiated by Co-60 gamma rays together with various phosphorus doses, was used to study their effect on growth, physiological and biochemical processes and production of artemisinin in A. annua. Among various applied doses of phosphorus fertilizer, P40 (40 kg Pha(-1)) together with ISA80 (80 mg L(-1)) significantly improved all the parameters studied. Increase in plant height as well as weight was noted at this treatment. Dry leaf yield, artemisinin concentration in leaves and artemisinin yield was also significantly enhanced by the treatment.


Assuntos
Alginatos/metabolismo , Artemisia annua/crescimento & desenvolvimento , Artemisininas/metabolismo , Fósforo/metabolismo , Agricultura , Alginatos/análise , Artemisia annua/metabolismo , Biomassa , Fertilizantes/análise , Raios gama , Ácido Glucurônico/análise , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/análise , Ácidos Hexurônicos/metabolismo , Fósforo/análise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA