Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102901, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642186

RESUMO

The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Infecções por HIV , HIV-1 , Ubiquitina , Humanos , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia
2.
Nat Commun ; 8(1): 1391, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123089

RESUMO

HIV-1 replication requires Tsg101, a component of cellular endosomal sorting complex required for transport (ESCRT) machinery. Tsg101 possesses an ubiquitin (Ub) E2 variant (UEV) domain with a pocket that can bind PT/SAP motifs and another pocket that can bind Ub. The PTAP motif in the viral structural precursor polyprotein, Gag, allows the recruitment of Tsg101 and other ESCRTs to virus assembly sites where they mediate budding. It is not known how or even whether the UEV Ub binding function contributes to virus production. Here, we report that disruption of UEV Ub binding by commonly used drugs arrests assembly at an early step distinct from the late stage involving PTAP binding disruption. NMR reveals that the drugs form a covalent adduct near the Ub-binding pocket leading to the disruption of Ub, but not PTAP binding. We conclude that the Ub-binding pocket has a chaperone function involved in bud initiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/metabolismo , Fatores de Transcrição/metabolismo , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Esomeprazol/farmacologia , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/genética , Ubiquitina/metabolismo , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Liberação de Vírus/efeitos dos fármacos , Liberação de Vírus/genética
3.
J Neurovirol ; 22(2): 179-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26407718

RESUMO

In the era of combined antiretroviral therapy (CART), many of the complications due to HIV-1 infection have diminished. One exception is HIV-associated neurocognitive disorder (HAND). HAND is a spectrum of disorders in cognitive function that ranges from asymptomatic disease to severe dementia (HAD). The milder form of HAND has actually remained the same or slightly increased in prevalence in the CART era. Even in individuals who have maintained undetectable HIV RNA loads, viral proteins such as Nef and Tat can continue to be expressed. In this report, we show that Nef protein and nef messenger RNA (mRNA) are packaged into exosomes that remain in circulation in patients with HAD. Plasma-derived Nef exosomes from patients with HAD have the ability to interact with the neuroblastoma cell line SH-SY5Y and deliver nef mRNA. The mRNA can induce expression of Nef in target cells and subsequently increase expression and secretion of beta-amyloid (Aß) and Aß peptides. Increase secretion of amyloid peptide could contribute to cognitive impairment seen in HAND.


Assuntos
Complexo AIDS Demência/sangue , Peptídeos beta-Amiloides/biossíntese , Exossomos/metabolismo , Fragmentos de Peptídeos/biossíntese , RNA Mensageiro/biossíntese , RNA Viral/sangue , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/fisiopatologia , Complexo AIDS Demência/virologia , Adulto , Idoso , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular Tumoral , Exossomos/patologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carga Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
4.
J Virol ; 84(13): 6438-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427533

RESUMO

The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca(2+) to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca(2+) provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca(2+) stores. Following activation by binding of its ligand, IP3, it releases Ca(2+) from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca(2+) signaling as a potential novel cofactor in viral particle release.


Assuntos
Cálcio/metabolismo , HIV-1/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Inativação Gênica , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
5.
J Virol ; 79(11): 6859-67, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15890925

RESUMO

We introduced polypurine tract (PPT) mutations, which we had previously tested in an in vitro assay, into the viral clone NL4-3KFSdelta nef. Each mutant was tested for single-round infectivity and virion production. All of the PPT mutations had an effect on replication; however, mutation of the 5' end appeared to have less of an effect on infectivity than mutation of the 3' end of the PPT sequence. Curiously, a mutation in which the entire PPT sequence was randomized (PPTSUB) retained 12% of the infectivity of the wild type (WT) in a multinuclear activation of galactosidase indicator assay. Supernatants from these infections contained viral particles, as evidenced by the presence of p24 antigen. Two-long terminal repeat (2-LTR) circle junction analysis following PPTSUB infection revealed that the mutant could form a high percentage of normal junctions. Quantification of the 2-LTR circles using real-time PCR revealed that number of 2-LTR circles from cells infected with the PPTSUB mutant was 3.5 logs greater than 2-LTR circles from cells infected with WT virus. To determine whether the progeny virions from a PPTSUB infection could undergo further rounds of replication, we introduced the PPTSUB mutation into a replication-competent virus. Our results show that the mutant virus is able to replicate and that the infectivity of the progeny virions increases with each passage, quickly reverting to a WT PPT sequence. Together, these experiments confirm that the 3' end of the PPT is important for plus-strand priming and that a virus that completely lacks a PPT can replicate at a low level.


Assuntos
HIV-1/genética , HIV-1/fisiologia , Mutação , Replicação Viral/genética , Sequência de Bases , Linhagem Celular , DNA Circular/genética , DNA Viral/genética , Repetição Terminal Longa de HIV , HIV-1/patogenicidade , Humanos , Virulência/genética
6.
J Virol ; 78(20): 11084-96, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15452229

RESUMO

The HIV-1 Nef protein was analyzed for apoptotic structural motifs that interact with the CXCR4 receptor and induce apoptosis in CD4(+) lymphocytes. Two apoptotic motifs were identified. One centered on Nef amino acids (aa) 50 to 60, with the overlapping 20-mer peptides retaining about 82% of the activity of the full Nef protein. The second centered on aa 170 to 180, with the overlapping 20-mer peptides retaining about 30% of the activity of the full protein. Significant apoptotic abilities were observed for 11-mer motif peptides spanning aa 50 to 60 and aa 170 to 180, with a scrambled version of the 11-mer motif peptide corresponding to aa 50 to 60 showing no apoptotic ability. Hallmarks of apoptosis, such as the formation of DNA ladders and caspase activation, that were observed with the full-length protein were equally evident upon exposure of cells to these motif peptides. A CXCR4 antibody and the endogenous ligand SDF-1alpha were effective in blocking Nef peptide-induced apoptosis as well as the physical binding of a fluorescently tagged Nef protein, while CCR5 antibodies were ineffective. The CXCR4-negative cell line MDA-MB-468 was resistant to the apoptotic peptides and became sensitive to the apoptotic peptides upon transfection with a CXCR4-expressing vector. A fluorescently tagged motif peptide and Nef protein displayed physical binding to CXCR4-transfected MDA-MB-468 cells, but not to CCR5-transfected cells. The removal of the apoptotic motif sequences from the full-length protein completely eliminated the ability of Nef to induce apoptosis. However, these modified Nef proteins still retained the ability to enhance viral infectivity. Thus, specific sequences in the Nef protein appear to be necessary for Nef protein-induced apoptosis as well as for physical interaction with CXCR4 receptors.


Assuntos
Apoptose , Produtos do Gene nef/metabolismo , Receptores CXCR4/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Produtos do Gene nef/química , Produtos do Gene nef/genética , Humanos , Células Jurkat , Leucócitos Mononucleares/imunologia , Dados de Sequência Molecular , Peptídeos/farmacologia , Transfecção
7.
J Virol ; 77(7): 4431-4, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12634401

RESUMO

We have previously shown that virions with nef deleted can be restored to wild-type infectivity by treatment to induce natural endogenous reverse transcription (NERT). Since Nef and cyclophilin A (CyPA) appear to act in similar ways on postentry events, we determined whether NERT treatment would restore infectivity to virions depleted of CyPA. Our results show that the infectivity of virions depleted of CyPA by treatment with cyclosporine A could be restored by NERT treatment, while mutants in the CyPA binding loop of capsid could only be partially restored. These results suggest that CyPA is involved in some aspect of the uncoating process.


Assuntos
Ciclofilina A/fisiologia , HIV-1/patogenicidade , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/fisiologia , Linhagem Celular , Ciclofilina A/deficiência , Ciclosporina/farmacologia , Genes Virais , Genes nef , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/fisiologia , Humanos , Imunossupressores/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Mutação , Transcrição Gênica , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA