Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 45-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192493

RESUMO

Purpose: Adipogenesis is one of the major pathways for generating obesity or overweight that can cause a range of metabolic disorders. Circular RNAs (circRNAs), a specific type of RNAs, have a significant influence on metabolic disorders. This study aims to find differentially expressed circRNAs (DECs) during human subcutaneous adipose tissue (SATs) adipogenesis. Patients and Methods: The human adipose tissue-derived stromal cells (hADSCs) were isolated from human SATs (n = 3), and then induced into adipocytes. Total RNAs were extracted from hADSCs and adipocytes, and he DECs were detected using circRNA microarray. The GO and KEGG pathways of DECs were analyzed by bioinformatic methods, and partial DECs were further validated by quantitative polymerase chain reaction (qPCR). Results: Our study detected a total of 1987 DECs, among which, 1134 were found upregulated and 853 were downregulated. GO analysis showed that the upregulated DECs have catalytic activity in intracellular organelle and cytoplasms, whereas downregulated DECs are enriched in organelle lumen, and are involved in positive regulation of developmental process. In addition, pathway results demonstrated that upregulated DECs are involved in platinum drug resistance and cellular senescence, and downregulated DECs are enriched in proteoglycans in cancer and focal adhesion pathway. Two circRNAs, namely has_circ_0001600 and has_circ_0001947 were validated to be significantly upregulated in adipocytes compared to hADSCs. Conclusion: Our study explored DECs between hADSCs derived from SATs and adipocytes, and report that two circRNAs named has_circ_0001600 and has_circ_0001947 might be important factors involved in human adipogenesis, however, the molecular mechanism should be further explored.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37817652

RESUMO

Type 1 Diabetes (T1D) is characterized by hyperglycemia, and caused by a lack of insulin secretion. At present there is no cure for T1D and patients are dependent on exogenous insulin for lifelong, which seriously affects their lives. Mesenchymal stem cells (MSCs) can be differentiated to ß cell-like cells to rescue the secretion of insulin and reconstruct immunotolerance to preserve the function of islet ß cells. Due to the higher proportion of children and adolescents in T1D patients, the efficacy and safety issue of the application of MSC's transplant in T1D was primarily demonstrated and identified by human clinical trials in this review. Then we clarified the mechanism of MSCs to relieve the symptom of T1D and found out that UC-MSCs have no obvious advantage over the other types of MSCs, the autologous MSCs from BM or menstrual blood with less expanded ex vivo could be the better choice for clinical application to treat with T1D through documentary analysis. Finally, we summarized the advances of MSCs with different interventions such as genetic engineering in the treatment of T1D, and demonstrated the advantages and shortage of MSCs intervened by different treatments in the transplantation, which may enhance the clinical efficacy and overcome the shortcomings in the application of MSCs to T1D in future.

3.
Curr Med Chem ; 30(3): 316-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34477507

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS: Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS: Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION: This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas Metálicas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Disponibilidade Biológica
4.
Drug Discov Today ; 28(3): 103481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584876

RESUMO

Cordycepin, a nucleoside from Cordyceps mushrooms, has many beneficial properties for health, including anticancer activities. In cancer cells, cordycepin targets various signaling molecules. Here, we review the possible anticancer mechanisms of cordycepin involving the targeting of kinases. Abnormal kinase expression is involved in cancer development and progression through different molecular mechanisms, including phosphorylation, amplification, genetic mutations, and epigenetic regulation. Research suggests that kinases, such as the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), AMP kinase (AMPK), phosphoinositide 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK)-3ß, and focal adhesion kinase (FAK) pathways, can be targeted by cordycepin and disrupting their activity. Given that kinase inhibitors can have crucial roles in cancer treatment, targeting kinases might be one of the molecular mechanisms involved in the anticancer potential of cordycepin.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Transdução de Sinais , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235288

RESUMO

Thymoquinone, a well-known phytoconstituent derived from the seeds of Nigella sativa, exhibits unique pharmacological activities However, despite the various medicinal properties of thymoquinone, its administration in vivo remains challenging due to poor aqueous solubility, bioavailability, and stability. Therefore, an advanced drugdelivery system is required to improve the therapeutic outcome of thymoquinone by enhancing its solubility and stability in biological systems. Therefore, this study is mainly focused on preparing thymoquinone-loaded liposomes to improve its physicochemical stability in gastric media and its performance in different cancer cell line studies. Liposomes were prepared using phospholipid extracted from egg yolk. The liposomal nano preparations were evaluated in terms of hydrodynamic diameter, zeta potential, microscopic analysis, and entrapment efficiency. Cell-viability measurements were conducted using breast and cervical cancer cell lines. Optimized liposomal preparation exhibited polygonal, globule-like shape with a hydrodynamic diameter of less than 260 nm, PDI of 0.6, and zeta potential values of -23.0 mV. Solid-state characterizations performed using DSC and XRPD showed that the freeze-dried liposomal preparations were amorphous in nature. Gastric pH stability data showed no physical changes (precipitation, degradation) or significant growth in the average size of blank and thymoquinone-loaded liposomes after 24 h. Cell line studies exhibited better performance for thymoquinone-loaded liposomal drug delivery system compared with the thymoquinone-only solution; this finding can play a critical role in improving breast and cervical cancer treatment management.


Assuntos
Neoplasias da Mama , Neoplasias do Colo do Útero , Benzoquinonas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipossomos/química , Tamanho da Partícula , Fosfolipídeos , Neoplasias do Colo do Útero/tratamento farmacológico
6.
Front Oncol ; 12: 898583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774120

RESUMO

Cancer metastasis is the most important cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) plays crucial roles in cancer metastasis. Cordycepin (CD) is highly enriched in the medicinally used Cordyceps mushroom. In this study, we conducted the antimetastatic activities of CD, specifically focusing on its regulatory effects on EMT-inducing transcription factors (EMT-TFs) in triple-negative breast cancer (TNBC). Our study showed CD to inhibit the growth, migration, and invasion of BT549 and 4T1 cancer cell lines, by employing cell viability assay and real-time cell analyses. The protein levels of N-Cadherin and E-Cadherin, as well as their transcription factors TWIST1, SLUG, SNAIL1, and ZEB1 in BT549 and 4T1 cells, were estimated by Western blot assays. Results from dual-luciferase reporter assays demonstrated that CD is capable of inactivating the EMT signaling pathway by inhibiting TWIST1 and SLUG expression. Furthermore, in vivo studies with mice carrying cancer cell-derived allograft tumors showed the inhibitory effect of CD on cancer cell growth and metastasis. Furthermore, the additive/synergistic anti-metastasis effect of CD and thymoquinone (TQ), another natural product with promising anticancer roles, was demonstrated by combinational treatment. The results from this research indicate that CD would be a promising therapeutic molecule against TNBC by targeting EMT-TFs, possibly in SLUG, TWIST1, SNAIL1, and ZEB1.

7.
BMC Cancer ; 22(1): 707, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761256

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a molecular subtype of breast cancer, which is a major health burden of females worldwide. Thymoquinone (TQ), a natural compound, has been found to be effective against TNBC cells, and this study identified IL17RD as a novel target of TQ in TNBC cells. METHODS: We have performed chromatin immunoprecipitation Sequence (ChIP-Seq) by MBD1 (methyl-CpG binding domain protein 1) antibody to identify genome-wide methylated sites affected by TQ. ChIP-seq identified 136 genes, including the tumor suppressor IL17RD, as a novel target of TQ, which is epigenetically upregulated by TQ in TNBC cell lines BT-549 and MDA-MB-231. The IL17RD expression and survival outcomes were studied by Kaplan-Meier analysis. RESULTS: TQ treatment inhibited the growth, migration, and invasion of TNBC cells with or without IL17RD overexpression or knockdown, while the combination of IL17RD overexpression and TQ treatment were the most effective against TNBC cells. Moreover, higher expression of IL17RD is associated with longer survival in TNBC patients, indicating potential therapeutic roles of TQ and IL17RD against TNBC. CONCLUSIONS: Our data suggest that IL17RD might be epigenetically upregulated in TNBC cell lines by TQ, and this might be one of the mechanisms by which TQ exerts its anticancer and antimetastatic effects on TNBC cells.


Assuntos
Neoplasias de Mama Triplo Negativas , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Processos Neoplásicos , Receptores de Interleucina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Front Endocrinol (Lausanne) ; 13: 859638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370989

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic ß-cells, leading to the destruction of insulitis-related islet ß-cells. Islet ß-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of ß-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of ß-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet ß-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet ß-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante de Células-Tronco
10.
Mol Biol Rep ; 49(7): 6725-6739, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35277785

RESUMO

Cancer is one of the major health burdens worldwide, and genetic polymorphisms in individuals are closely associated with cancer susceptibility. Like in many other developing countries, the risk of cancer is increasing among Bangladeshi population. Genetic polymorphisms in xenobiotic metabolic enzymes (CYP1A1, CYP2A6, CYP3A4, CYP3A5, NAT2, SULT1A), cell cycle regulatory proteins (TP53, HER2, MDM2, miR-218-2, TGFB), cell signaling protein (CDH1), DNA repair proteins (BRCA1, BRCA2, EXO1, RAD51, XRCC2, ECCR1, ERCC4, XPC, ERCC2), and others (HLA-DRB1, INSIG2, GCNT1P5) have been found to be associated with various cancers like cancers of breast, bladder, cervix, colon, lung, prostate, etc. in different studies with Bangladeshi population. In this review article, we have discussed these gene polymorphisms associated with cancers in the Bangladeshi population, and also made a comparison with other ethnic groups. This will probably be helpful in understanding drug effects, drug resistance, and personalized medicine in the population of this region.


Assuntos
Arilamina N-Acetiltransferase , MicroRNAs , Neoplasias , Arilamina N-Acetiltransferase/genética , Bangladesh/epidemiologia , Estudos de Casos e Controles , Citocromo P-450 CYP1A1/genética , Proteínas de Ligação a DNA/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Neoplasias/genética , Polimorfismo Genético/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
11.
PLoS One ; 17(1): e0261341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061708

RESUMO

The increasing incidence of prostate cancer (PCa) indicates an urgent need for the development of new effective drug therapy. There are limited options to treat the PCa, this study tried to determine a new therapy option for this acute cancer. Androgen-independent PCa cell lines PC3 and DU145 were treated with different melatonin concentrations (0.1~3.5 mM) for 1~3 days and assessed cell migration, cell invasion, cycle arrest in G0/G1 phase as well as apoptosis. We utilized RNA-seq technology to analyze the transcriptional misregulation pathways in DU145 prostate cancer cell line with melatonin (0.5 mM) treatment. Data revealed 20031 genes were up and down-regulated, there were 271 genes that differentially expressed: 97 up-regulated (P<0.05) and 174 down-regulated (P<0.05) genes. Furthermore, RNA-seq results manifested that the melatonin treatment led to a significant increase in the expression levels of HPGD, IL2Rß, NGFR, however, IGFBP3 and IL6 (P <0.05) had decreased expression levels. The immunoblot assay revealed the expression of IL2Rß and NGFR genes was up-regulated, qPCR confirmed the gene expression of HPGD and IL2RB were also up-regulated in Du145 cells. Consequently, we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in PCa cells responding to a NF-κB-activation, the significant results were indicated by the inhibition of the NF-kB pathway via IL2Rß actions. Based on our investigation, it could be concluded that melatonin is a chemotherapeutic molecule against PCa and provides a new idea for clinical therapy of PCa.


Assuntos
Neoplasias da Próstata , Humanos , Masculino
12.
Anticancer Agents Med Chem ; 22(8): 1561-1570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34102992

RESUMO

BACKGROUND: Fomitopsis officinalis (Vill. ex Fr. Bond. et Sing) is a medicinal mushroom, commonly called 'Agarikon'; it has traditionally been used to treat cough and asthma in the Mongolian population. OBJECTIVE: The objective of the study was to examine the significance of biological activity of F. officinalis and evaluation of the antioxidant activity and anticancer activity of six fractions of F. officinalis residues (Fo1-powder form dissolved in ethanol, Fo2-petroleum ether residue, Fo3-chloroformic, Fo4-ethylacetate, Fo5-buthanolic, and Fo6-waterethanolic) against hepatocellular carcinoma cells. METHODS: We performed in vitro studies of cell proliferation and viability assay, annexin V-FITC/Propidium Iodide assay, and NF-kB signaling pathway by immunoblot analysis. RESULTS: Our findings revealed that all six fractions/extracts have antioxidant activity, and somehow, they exert anticancerous effects against cancer cells. In cancerous cell lines (HepG2 and LO2), Fo3 chloroformic extract promoted the cancer cell apoptosis and cell viability, activated G2/M-phase cell cycle, and selectively induced NF-kB proteins, revealing as a novel antitumor extract. CONCLUSION: This study reports that Fo3-chloroformic extract is rich in antitumor activity, which was previously not investigated in cancer. To develop the impact of F. officinalis among natural products to treat/prevent oxidative stress disorders or cancers, further examinations of F. officinalis are needed to develop new natural drugs to treat cancer. However, this study assessed only one extract, Fo3-chloroformic, which has a significant impact against cancer cell lines.


Assuntos
Agaricales , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular , Proliferação de Células , Coriolaceae , Humanos , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B , Extratos Vegetais/farmacologia
13.
Curr Med Chem ; 29(13): 2274-2289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34382520

RESUMO

BACKGROUND: Cancer cells are usually recognized as foreign particles by the immune cells. Mounting evidence suggest an important link between toll-like receptors (TLRs) and carcinogenesis. This review article focused on the role of TLRs, especially TLR4, in breast cancer. METHODS: Research data on TLRs and cancer was explored in PubMed, Scopus, Google Scholar and reviewed. Although some pioneer works are referenced, papers published in the last ten years were mostly cited. RESULTS: TLRs are widely investigated pattern recognition receptors (PRR), and TLR4 is the most studied TLRs, implicated with the occurrence of several types of cancers, including breast cancer. TLR4 activation occurs via the binding of its ligand lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria. Upon LPS binding, TLR4 dimerizes and recruits downstream signalling and/or adapter molecules, leading to gene expression related to cancer cell proliferation, survival, invasion, and metastasis. Although LPS/TLR4 signalling seems a single signal transduction pathway, the TLR4 activation results in the activation of multiple diverse intracellular networks with huge cellular responses in both immune and cancer cells. The role of TLR4 in the growth, invasion, and metastasis of breast cancer is attracting huge attention in oncology research. Several clinical and preclinical studies utilize both TLR4 agonists and antagonists as a treatment option for cancer therapy, either as monotherapy or adjuvants for vaccine development. CONCLUSION: This review narrates the role of LPS/TLR4 signalling in breast cancer development and future prospects for targeting LPS/TLR4 axis in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Lipopolissacarídeos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Ligantes , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like
14.
Anticancer Agents Med Chem ; 22(6): 1111-1118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34170813

RESUMO

BACKGROUND: Triple Negative Breast Cancer (TNBC) is considered as the most deadly subtype of breast cancer, because of heterogeneity, less treatment options and resistance to chemotherapy. OBJECTIVE: To find out an efficient chemotherapeutic options, in this study we have investigated the combined therapy of 5-Fluorouracil (5-FU) and thymoquinone (TQ) against TNBC cell lines BT-549 and MDA-MB-231. METHODS: We have tested 5-FU and TQ alone and in combination (5-FU + TQ) to observe the cellular growth, cell cycle and apoptosis status of BT-549 and MDA-MB-231 cells. Also we have measured the mRNA level expression of genes related to cell cycle and apoptosis. RESULTS: Experimental results suggest that both of 5-FU and TQ are effective in controlling cell growth, cell cycle and inducing apoptosis, but their combination is much more effective. 5-FU was found to be more effective in controlling cell growth, while TQ was found to be more effective in inducing apoptosis, but in both cases, their combination was most effective. TQ was found more effective in increasing and BAX/BCL-2 ratio, while 5-FU was more effective in inhibiting thymidylate synthase. They showed significant increasing effects on caspases and P53 and decreasing effect on CDK-2, where their combination was found most effective. CONCLUSION: Thus, TQ and 5-FU probably showed synergistic effect on both of cell cycle and apoptosis of tested TNBC cell lines. Our study reveals that TQ can synergise 5-FU action, and increase its anticancer efficiency against TNBC cells, which might be good choice in drug development for TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Apoptose , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Fluoruracila/farmacologia , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
15.
Anticancer Agents Med Chem ; 22(3): 499-514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34802408

RESUMO

Phytochemicals are being used for thousands of years to prevent dreadful malignancy. Side effects of existing allopathic treatment have also initiated intense research in the field of bioactive phytochemicals. Gallic acid, a natural polyphenolic compound, exists freely as well as in polymeric forms. The anti-cancer properties of gallic acid are indomitable by a variety of cellular pathways such as induction of programmed cell death, cell cycle apprehension, reticence of vasculature and tumor migration, and inflammation. Furthermore, gallic acid is found to show synergism with other existing chemotherapeutic drugs. Therefore, the antineoplastic role of gallic acid suggests its promising therapeutic candidature in the near future. The present review describes all these aspects of gallic acid at a single platform. In addition nanotechnology-mediated approaches are also discussed to enhance bioavailability and therapeutic efficacy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ácido Gálico/farmacologia , Neoplasias/tratamento farmacológico , Oncogenes/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Ácido Gálico/química , Humanos , Neoplasias/patologia , Compostos Fitoquímicos/química
17.
Chem Biol Interact ; 350: 109699, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648814

RESUMO

Despite extensive efforts, cancer is still often considered as an incurable disease and initiation of novel drug development programs is crucial to improve the prognosis and clinical outcome of patients. One of the major approaches in designing the novel cancer drugs has historically comprised studies of natural agents with diverse anticancer properties. As only a marginal part of natural compounds has been investigated, this approach still represents an attractive source of new potential antitumor molecules. In this review article, different anticancer effects of plant-derived chalcone, butein, are discussed, including its growth inhibitory action, proapoptotic, antiangiogenic and antimetastatic activities in a variety of cancer cells. The molecular mechanisms underlying these effects are presented in detail, revealing interactions of butein with multiple cellular targets (Bcl-2/Bax, caspases, STAT3, cyclins, NF-κB, COX-2, MMP-9, VEGF/R etc.) and regulation of a wide range of intracellular signal transduction pathways. These data altogether allow a good basis for initiating further in vivo studies as well as clinical trials. Along with the efforts to overcome low bioavailability issues generally characteristic to plant metabolites, butein can be considered as a potential lead compound for safe and more efficient cancer drugs in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/química , Chalconas/farmacocinética , Quimioprevenção , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Nanotecnologia , Oxirredução
18.
Biomed Pharmacother ; 134: 111157, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33370631

RESUMO

Autoimmune diseases (AUDs) are a multifactorial disease, among which rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis are more prevalent. Several anti-inflammatory, biologics, and AUD-modifying drugs are found effective against them, but their repeated use are associated with various adverse effects. In this review article, we have focused on the regulation of inflammatory molecules, molecular signaling pathways, immune cells, and epigenetics by natural product thymoquinone on AUDs. Studies indicate that thymoquinone can regulate inflammatory molecules including interferons, interleukins, tumor necrosis factor-α (TNF-α), oxidative stress, regulatory T cells, and various signaling pathways such as nuclear factor kappa beta (NF-κß), janus kinase/signal transduction and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) at the molecular level and epigenetic alteration. As these molecules and signaling pathways with defective immune function play an important role in AUD development, controlling these molecules and deregulated molecular mechanism is a significant feature of AUD therapeutics. Interestingly thymoquinone is reported to possess all these potential. This article reviewed the deregulated mechanism of AUDs, and the action of thymoquinone on inflammatory molecules, immune cells, signaling pathways, and epigenetic machinery. Thymoquinone can be regarded as a potential drug candidate for AUD treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Animais , Anti-Inflamatórios/efeitos adversos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/fisiopatologia , Benzoquinonas/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Fatores Imunológicos/efeitos adversos , Mediadores da Inflamação/metabolismo , Transdução de Sinais
19.
Med Chem ; 17(9): 963-973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33155927

RESUMO

BACKGROUND: Reactive oxygen species are involved in the etiology and progress of many kinds of diseases such as cancer, cardiovascular diseases, inflammatory and neurodegenerative disorders. Epidemiological studies reported that fruits, vegetables, and wines containing a high percentage of phenolics and flavonoids showed a positive impact in treating inflammatory diseases, reducing cancer risk, and increasing life expectancy. OBJECTIVE: Some Mongolian medicinal plants were studied for their antioxidant activity and anticancer effects. METHODS: Selected Mongolian medicinal plant extracts were examined for their antioxidant activity by the DPPH-radical scavenging assay, the content of phenolics and flavonoids by Folin-Ciocalteu and the Dowd method, respectively, and anti-cancer activities in human hepatoma cell line HepG2 cells by MTT assay. RESULTS: Methanol extract from Hippophae rhamnoides L. leaf and ethanol extract from Artemisia macrocephala Jacq. ex Bess. showed the highest efficiency to scavenge free radicals. Ethanol extracts from Hippophae rhamnoides L. grain and Paeonio anomala L. leaf showed the highest total phenolics content, whereas Hippophae rhamnoides L. fruit methanol extract and ethanol extract from Caragana leucophloea pojark. mentioned the highest flavonoids content. The Artemisia macrocephala Jacq. ex Bess seed wallet and Paeonia anomala L. seed wallet showed the most potent antiproliferative effects against human liver cancer HepG2 cell line. Gnetin-H compound was isolated from the Paeonio anomala L. seed wallet extract, and its molecular structure was determined by 1H and 13C NMR spectrum and IR spectroscopy methods. CONCLUSION: The screening study on anti-oxidative effects of 21 extracts from 15 Mongolian medicinal plants showed anti-oxidative activities and was rich in phenolics and flavonoids. Among these, methanol extract of the Hippophae rhamnoides L. leaf showed a better anti-oxidative effect than the ethanol extract. Artemisia macrocephala Jacq. ex Bess and Paeonia anomala L. seed wallet mentioned the best anti-cancer effects. Gnetin-H, methyl gallate, ethylgallate were the major components in the extract from the Paeonio anomala L. seed wallet. Finally, the molecular structure of gnetin-H was determined by NMR and IR spectroscopy. Further investigation, especially in vivo antioxidant activity, is needed to justify the use of a natural source of antioxidants to prevent the progression of diseases such as cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Resorcinóis/química , Estilbenos/química , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Avaliação Pré-Clínica de Medicamentos , Flavonoides/análise , Frutas/química , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Mongólia , Paeonia/química , Fenóis/análise , Extratos Vegetais/química , Resorcinóis/isolamento & purificação , Sementes/química , Estilbenos/isolamento & purificação
20.
Mini Rev Med Chem ; 21(3): 288-301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33019927

RESUMO

BACKGROUND: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE: In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD: We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS: Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Benzoquinonas/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA