Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 15(2): 2283147, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990909

RESUMO

Host diet and gut microbiota interact to contribute to perioperative complications, including anastomotic leak (AL). Using a murine surgical model of colonic anastomosis, we investigated how diet and fecal microbial transplantation (FMT) impacted the intestinal microbiota and if a predictive signature for AL could be determined. We hypothesized that a Western diet (WD) would impact gut microbial composition and that the resulting dysbiosis would correlate with increased rates of AL, while FMT from healthy, lean diet (LD) donors would reduce the risk of AL. Furthermore, we predicted that surgical outcomes would allow for the development of a microbial preclinical translational tool to identify AL. Here, we show that AL is associated with a dysbiotic microbial community characterized by increased levels of Bacteroides and Akkermansia. We identified several key taxa that were associated with leak formation, and developed an index based on the ratio of bacteria associated with the absence and presence of leak. We also highlight a modifiable connection between diet, microbiota, and anastomotic healing, potentially paving the way for perioperative modulation by microbiota-targeted therapeutics to reduce AL.


Assuntos
Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Colo/cirurgia , Colo/microbiologia , Anastomose Cirúrgica/efeitos adversos , Transplante de Microbiota Fecal/métodos , Fístula Anastomótica/microbiologia , Dieta Ocidental/efeitos adversos
2.
Gut Microbes ; 14(1): 2108279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921529

RESUMO

The intestinal microbiota produces ß-glucuronidase that plays an essential role in the metabolism of the immunosuppressant mycophenolate mofetil (MMF). This drug is commonly used in organ and hematopoietic cell transplantation (HCT), with variations in dosing across transplant types. We hypothesized that ß-glucuronidase activity differs between transplant types, which may account for differences in dosing requirements. We evaluated fecal ß-glucuronidase activity in patients receiving MMF post-allogeneic HCT and post-kidney transplant. Kidney transplant patients had significantly greater ß-glucuronidase activity (8.48 ± 6.21 nmol/hr/g) than HCT patients (3.50 ± 3.29 nmol/hr/g; P = .001). Microbially mediated ß-glucuronidase activity may be a critical determinant in the amount of mycophenolate entering the systemic circulation and an important factor to consider for precision dosing of MMF.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Transplante de Rim , Glucuronidase , Humanos , Imunossupressores , Ácido Micofenólico
3.
Plant Physiol Biochem ; 150: 1-14, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32097873

RESUMO

Plant growth-promoting rhizobacteria (PGPR) improve plant health under various biotic and abiotic stresses. However, the underlying mechanisms of the protective effects of PGPR in deficit water stress (WS) remain less explored. This study aimed to characterize the role of Ochrobactrum sp. NBRISH6 inoculation on maize (Zea mays "Maharaja") under WS conditions using multiple approaches such as physiological, anatomical, metabolic, and molecular. The effect of NBRISH6 inoculation using maize as a host plant was characterized under greenhouse conditions in deficit water stress. Results from this study demonstrated that NBRISH6 significantly lowered the expression of genes involved in the abscisic acid cycle, deficit water stress-response, osmotic stress, and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase). Phytohormones, i.e. indole acetic acid (IAA) and salicylic acid (SA) levels, intercellular CO2 concentration, metabolites such as simple sugars, amino acids, aliphatic hydrocarbons, and the number of shrunken pith cells modulated in maize roots inoculated with NBRISH6. The NBRISH6 inoculation also improved the plant vegetative properties (root length, 33.80%; shoot length, 20.68%; root dry weight, 39.21%; shoot dry weight, 61.95%), shoot nutrients, xylem cells, root hairs, vapor pressure deficit (75%), intrinsic water-use efficiency (41.67%), photosynthesis rate (83.33%), and total chlorophyll (16.15%) as compared to the respective stress controls. This study provides valuable insights into mechanistic functions of PGPR in WS amelioration and promoting plant physiological response.


Assuntos
Secas , Homeostase , Ochrobactrum , Estresse Fisiológico , Zea mays , Ochrobactrum/metabolismo , Oxirredutases/metabolismo , Raízes de Plantas/microbiologia , Estresse Fisiológico/fisiologia , Zea mays/microbiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA