Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705044

RESUMO

Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.


Assuntos
Compostos Fitoquímicos , Plantas Medicinais , Metabolismo Secundário , Humanos , Alcaloides/metabolismo , Antioxidantes/metabolismo , Fenóis/metabolismo , Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Terpenos/metabolismo , Compostos Fitoquímicos/uso terapêutico
2.
Mikrochim Acta ; 190(3): 87, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759372

RESUMO

Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV-Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55-250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample.


Assuntos
Ouro , Espermina , Ouro/química , Solubilidade , Técnicas Eletroquímicas/métodos , Sulfetos , Eletrodos , Óxidos
3.
Mar Pollut Bull ; 177: 113478, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35276614

RESUMO

The number of studies on microplastic accumulation in marine organisms has increased precipitously recently, though information is geographically-skewed and limited in terms of local effects. We characterized microplastic accumulation in oysters (Saccostrea cucullata) along a Bornean coastline, focusing on spatial variation. Comparisons were made between locally-polluted (Brunei Estuarine System, BES) and relatively pristine, open-shore (South China Sea, SCS) coastlines. Sixteen coloured microplastic types were characterized into three shapes (fragments, fibres, pellets). Fragments (74.9%), especially smaller polypropylene black fragments predominated in the samples (<50 µm, 31.7%). Site-specific levels of microplastic accumulation varied from 0.43 to 7.20 particles/g oyster tissue. BES and SCS sites differed qualitatively, indicating limited interaction. In the BES, accumulation was greatest near the predicted source (Bandar) and declined strongly seawards, implying current flow, environmental sequestration (local sinks) and seawater dilution effects. Such local-scale variation in microplastic loading in estuaries cautions against extrapolating from limited sampling.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Brunei , China , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
4.
J Mater Chem B ; 9(28): 5599-5620, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34161404

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) are a sought-after material in numerous fields due to their potential applications such as in catalysis, cancer therapy, photocatalytic degradation of pollutants, sensors, polishing agents. Green synthesis usually involves the production of CeO2 assisted by organic extracts obtained from plants, leaves, flowers, bacteria, algae, food, fruits, etc. The phytochemicals present in the organic extracts adhere to the NPs and act as reducing and/or oxidizing agents and capping agents to stabilize the NPs, modify the particle size, morphology and band gap energy of the as-synthesized materials, which would be advantageous for numerous applications. This review focuses on the green extract-mediated synthesis of CeO2 NPs and discusses the effects on CeO2 NPs of various synthesis methods that have been reported. Several photocatalytic, antimicrobial, antioxidant and cytotoxicity applications have been evaluated, compared and discussed. Future prospects are also suggested.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Cério/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Catálise , Cério/química , Cério/isolamento & purificação , Química Verde , Humanos , Nanopartículas/química , Processos Fotoquímicos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
5.
Bioprocess Biosyst Eng ; 44(7): 1333-1372, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661388

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.


Assuntos
Biocombustíveis , Hidrogênio/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Óxido de Zinco/química , Animais , Antibacterianos , Catálise , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Recuperação e Remediação Ambiental , Desenho de Equipamento , Química Verde , Humanos , Compostos Fitoquímicos/química , Extratos Vegetais , Pós , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
6.
Bioprocess Biosyst Eng ; 43(8): 1339-1357, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32193755

RESUMO

The development of nanoparticle-based drugs has provided many opportunities to diagnose, treat and cure challenging diseases. Through the manipulation of size, morphology, surface modification, surface characteristics, and materials used, a variety of nanostructures can be developed into smart systems, encasing therapeutic and imaging agents with stealth properties. These nanostructures can deliver drugs to specific tissues or sites and provide controlled release therapy. This targeted and sustained drug delivery decreases the drug-related toxicity and increases the patient's compliance with less frequent dosing. Nanotechnology employing nanostructures as a tool has provided advances in the diagnostic testing of diseases and cure. This technology has proven beneficial in the treatment of cancer, AIDS, and many other diseases. This review article highlights the recent advances in nanostructures and nanotechnology for drug delivery, nanomedicine and cures.


Assuntos
Síndrome da Imunodeficiência Adquirida , Portadores de Fármacos/uso terapêutico , Nanomedicina , Nanoestruturas/uso terapêutico , Neoplasias , Síndrome da Imunodeficiência Adquirida/diagnóstico , Síndrome da Imunodeficiência Adquirida/diagnóstico por imagem , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Humanos , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
7.
Bioprocess Biosyst Eng ; 42(1): 1-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30238362

RESUMO

The hazardous effects of current nanoparticle synthesis methods have steered researchers to focus on the development of newer environmentally friendly and green methods for synthesizing nanoparticles using nontoxic chemicals. The development of environmentally friendly methods of nanoparticle synthesis with different sizes and shapes is one of the pressing challenges for the current nanotechnology. Several novel green approaches for the synthesis of AuNPs have been explored using different natural sources, such as plants, algae, bacteria, and fungi. Among organisms, algae and blue-green algae are of particular interest for nanoparticle synthesis. Gold nanoparticles (AuNPs) have a range of applications in medicine, diagnostics, catalysis, and sensors because of their significant key roles in important fields. AuNPs have attracted a significant interest for use in a variety of applications. The widespread use of AuNPs can be accredited to a combination of optical, physical, and chemical properties as well as the miscellany of size, shape, and surface composition that has been adopted through green synthesis methods.


Assuntos
Cianobactérias/fisiologia , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Antioxidantes/química , Infecções Bacterianas/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Fungos , Química Verde , Humanos , Nanotecnologia/tendências , Neoplasias/tratamento farmacológico , Plantas , Polímeros/química , Alga Marinha , Sefarose/análogos & derivados , Sefarose/química , Propriedades de Superfície
8.
Bioprocess Biosyst Eng ; 41(1): 1-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28965140

RESUMO

Nanotechnology is a rapidly developing field because of its wide range of applications in science, nanoscience and biotechnology. Nanobiotechnology deals with nanomaterials synthesised or modified using biotechnology. Fungi are used to synthesise metal nanoparticles and they have vast applications in wound healing, pathogen detection and control, food preservation, textiles, fabrics, etc. The present review describes the different types of fungi used for the biosyntheses of silver nanoparticles (AgNPs), along with their characterisation and possible biological applications. AgNPs synthesised by other physical and chemical methods are expensive and have toxic substances adsorbed onto them. Therefore, green, simple and effective approaches have been chosen for the biosynthesis of AgNPs, which are very important because of their lower toxicity and environmentally friendly behaviour. AgNPs synthesised using fungi have high monodispersity, specific composition and a narrow size range. In this regard, among the different biological methods used for metal nanoparticle synthesis, fungi are considered to be a superior biogenic method owing to their diversity and better size control. To further understand the biosynthesis of AgNPs using various fungi and evaluate their potential applications, this review discusses the antimicrobial, antibacterial, antifungal, antiviral, antidermatophytic, anti-inflammatory, antitumor, hepatoprotective, cytotoxic, hypotensive, and immunomodulatory activities of these AgNPs. The synthesis of AgNPs using fungi is a clean, green, inexpensive, eco-friendly, reliable, and safe method that can be used for a range of applications in real life for the benefit of human beings.


Assuntos
Fungos/química , Fungos/metabolismo , Nanopartículas Metálicas/química , Prata/química
9.
J Nanosci Nanotechnol ; 13(9): 6140-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205616

RESUMO

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4 x 3H2O as a precursor at 30 degrees C and a stainless-steel mesh as a reducing agent. The penetration of Cl- ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ --> Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of non-toxic chemicals and easily available materials, and the non-requirement of energy input, make this methodology easy, inexpensive, and efficient. The new findings about the role of the stainless-steel mesh, which provides electrons in the presence of Cl- ions, for the reduction of Au3+ --> Au0, makes it a novel material for (+) AuNPs synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA