Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 143: 105267, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35114445

RESUMO

Cancer is the second deadliest disease globally that can affect any human body organ. Early detection of cancer can increase the chances of survival in humans. Morphometric appearances of histopathology images make it difficult to segment nuclei effectively. We proposed a model to segment overlapped nuclei from H&E stained images. U-Net model achieved state-of-the-art performance in many medical image segmentation tasks; however, we modified the U-Net to learn a distinct set of consistent features. In this paper, we proposed the DenseRes-Unet model by integrating dense blocks in the last layers of the encoder block of U-Net, focused on relevant features from previous layers of the model. Moreover, we take advantage of residual connections with Atrous blocks instead of conventional skip connections, which helps to reduce the semantic gap between encoder and decoder paths. The distance map and binary threshold techniques intensify the nuclei interior and contour information in the images, respectively. The distance map is used to detect the center point of nuclei; moreover, it differentiates among nuclei interior boundary and core area. The distance map lacks a contour problem, which is resolved by using a binary threshold. Binary threshold helps to enhance the pixels around nuclei. Afterward, we fed images into the proposed DenseRes-Unet model, a deep, fully convolutional network to segment nuclei in the images. We have evaluated our model on four publicly available datasets for Nuclei segmentation to validate the model's performance. Our proposed model achieves 89.77% accuracy 90.36% F1-score, and 78.61% Aggregated Jaccard Index (AJI) on Multi organ Nucleus Segmentation (MoNuSeg).

2.
Comput Math Methods Med ; 2020: 4015323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411282

RESUMO

Previous works on segmentation of SEM (scanning electron microscope) blood cell image ignore the semantic segmentation approach of whole-slide blood cell segmentation. In the proposed work, we address the problem of whole-slide blood cell segmentation using the semantic segmentation approach. We design a novel convolutional encoder-decoder framework along with VGG-16 as the pixel-level feature extraction model. The proposed framework comprises 3 main steps: First, all the original images along with manually generated ground truth masks of each blood cell type are passed through the preprocessing stage. In the preprocessing stage, pixel-level labeling, RGB to grayscale conversion of masked image and pixel fusing, and unity mask generation are performed. After that, VGG16 is loaded into the system, which acts as a pretrained pixel-level feature extraction model. In the third step, the training process is initiated on the proposed model. We have evaluated our network performance on three evaluation metrics. We obtained outstanding results with respect to classwise, as well as global and mean accuracies. Our system achieved classwise accuracies of 97.45%, 93.34%, and 85.11% for RBCs, WBCs, and platelets, respectively, while global and mean accuracies remain 97.18% and 91.96%, respectively.


Assuntos
Algoritmos , Células Sanguíneas/classificação , Células Sanguíneas/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Plaquetas/ultraestrutura , Biologia Computacional , Bases de Dados Factuais/estatística & dados numéricos , Aprendizado Profundo , Eritrócitos/ultraestrutura , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Leucócitos/ultraestrutura , Redes Neurais de Computação , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA