Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(16): 16727-16741, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30989610

RESUMO

Cadmium and mercury are non-biodegradable toxic metals that may cause many detrimental effects to the thyroid gland and blood. Vitamin C has been found to be a significant chain-breaking antioxidant and enzyme co-factor against metal toxicity and thus make them less available for animals. The current study was performed to find the effect of individual metals (cadmium and mercury), their co-administration, and the ameliorative effects of vitamin C on some of the parameters that indicate oxidative stress and thyroid dysfunction. Cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1. control; 2. Vit C; 3. CdCl2; 4. HgCl2; 5. Vit C + CdCl2; 6. Vit C + HgCl2; 7. CdCl2 + HgCl2, and 8. Vit C + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. triidothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), and triglycerides were measured using commercially available kits. The results exhibited significant decline (p < 0.05) in mean hemoglobin, corpuscular hemoglobin, packed cell volume, T3 (0.4 ± 0.0 ng/ml), and T4 (26.3 ± 1.6 ng/ml) concentration. While, TSH (0.23 ± 0.01 nmol/l) and triglyceride (4.42 ± 0.18 nmol/l) were significantly (p < 0.05) increased but chemo-treatment with Vit C reduces the effects of Cd, Hg, and their co-administration but not regained the values similar to those of controls. This indicates that Vit C had a shielding effect on the possible metal toxicity. The Cd and Hg also found to accumulate in vital organs when measured by atomic absorption spectrophotometer. The metal concentration trend was observed as follows: kidney > liver > heart > lungs. It was concluded that Cd and Hg are toxic and tended to bioaccumulate in different organs and their toxic action can be subdued by vitamin C in biological systems.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cádmio/toxicidade , Mercúrio/toxicidade , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Tireotropina/sangue , Animais , Peso Corporal/efeitos dos fármacos , Cádmio/metabolismo , Intoxicação por Metais Pesados , Hemoglobinas/análise , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mercúrio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Glândula Tireoide/metabolismo
2.
Environ Sci Pollut Res Int ; 26(4): 3909-3920, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30547340

RESUMO

Cadmium and mercury are among the most toxic and dangerous environmental pollutants that may cause fatal implications. Vitamin C is an important chain-breaking antioxidant and enzyme co-factor against heavy metals. The objective of the present study was to evaluate the toxicological effects of cadmium chloride, mercuric chloride, and their co-administration on biochemical parameters of blood serum and metal bioaccumulation in kidneys and also to elucidate the protective effect of vitamin C in rabbits against these metals. In the current research, cadmium chloride (1.5 mg/kg), mercuric chloride(1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1, control; 2, vitamin; 3, CdCl2; 4, HgCl2; 5, vitamin + CdCl2; 6, vitamin + HgCl2; 7, CdCl2 + HgCl2, and 8, vitamin + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. creatinine, cystatin C, uric acid, and alkaline phosphatase (ALP) and metal bioaccumulation were determined using commercially available kits and atomic absorption spectrophotometer, respectively. The levels of creatinine (28.3 ± 1.1 µmol/l), cystatin C (1932.5 ± 38.5 ηg/ml), uric acid (4.8 ± 0.1 mg/day), and ALP (51.6 ± 1.1 IU/l) were significantly (P < 0.05) increased due to administration of mercuric chloride but in the presence of vitamin C, the effects of mercuric chloride on creatinine (21.9 ± 1.4 µmol/l), cystatin C (1676.2 ± 42.2 ηg/ml), uric acid (3.9 ± 0.1 mg/day), and ALP (43.3 ± 0.8 IU/l) were less as compared to metal-exposed specimens. Similar results were found in rabbits treated with cadmium chloride and vitamin C and also with co-administration of both metals and vitamin C. Because of the bio-accumulative nature of cadmium chloride and mercuric chloride, these metals were accumulated in kidneys of rabbits, which might lead to deleterious effects. The results of the present study provide an insight into the toxicity of the cadmium chloride, mercuric chloride, and/or their combination on biochemical parameters as well as kidneys of the rabbits and the ameliorating potential of vitamin C against these metals is also evaluated.


Assuntos
Ácido Ascórbico/farmacologia , Cloreto de Cádmio/toxicidade , Rim/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Administração Oral , Fosfatase Alcalina/sangue , Animais , Antioxidantes/farmacologia , Cádmio/farmacocinética , Cádmio/toxicidade , Cloreto de Cádmio/administração & dosagem , Creatinina/sangue , Cistatina C/sangue , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Rim/metabolismo , Cloreto de Mercúrio/administração & dosagem , Mercúrio/farmacocinética , Mercúrio/toxicidade , Substâncias Protetoras/farmacologia , Coelhos , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA