Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Probl Cardiol ; 49(3): 102397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232921

RESUMO

Cardiovascular diseases (CVDs) are still leading to a significant number of deaths worldwide despite the remarkable advancements in medical technology and pharmacology. Managing patients with established CVDs is a challenge for healthcare providers as it requires reducing the chances of recurring cardiovascular events. On the other hand, changing one's way of life can also significantly impact this area, reducing the likelihood of cardiovascular disease and death through their unique advantages. Consequently, it is advisable for healthcare providers to regularly advise their patients with coronary issues to participate in organized physical exercise and improve their overall physical activity. Additionally, patients should adhere to a diet that promotes heart health, cease smoking, avoid exposure to secondhand smoke, and address any psychosocial stressors that may heighten the risk of cardiovascular problems. These lifestyle therapies, whether used alongside drug therapy or on their own in patients who may have difficulty tolerating medications, face financial barriers, or experience ineffectiveness, can substantially reduce cardiovascular mortality and the likelihood of recurring cardiac events. Despite the considerable advancements in creating interventions, it is still necessary to determine the optimal intensity, duration, and delivery method for these interventions. Furthermore, it is crucial to carry out further investigations incorporating extended monitoring and assessment of clinical outcomes to get a more comprehensive comprehension of the efficacy of these therapies. Presenting the findings within the framework of "lifestyle medicine," this review seeks to offer a thorough synopsis of the most recent scientific investigations into the potential of behavioral modifications to lower cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Estilo de Vida , Exercício Físico , Dieta
2.
Curr Gene Ther ; 24(4): 265-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284735

RESUMO

Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.


Assuntos
Dependovirus , Fator IX , Terapia Genética , Vetores Genéticos , Hemofilia A , Humanos , Hemofilia A/terapia , Hemofilia A/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Fator IX/genética , Fator VIII/genética , Hepatócitos/metabolismo , Transdução Genética
3.
Curr Probl Cardiol ; 49(2): 102222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000567

RESUMO

Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Infarto do Miocárdio , Humanos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Exercício Físico
4.
Cancer Inform ; 22: 11769351231177267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667731

RESUMO

The present study was the first comprehensive investigation of genetic mutation and expression levels of the p53 signaling genes in cutaneous melanoma through various genetic databases providing large datasets. The mutational landscape of p53 and its signaling genes was higher than expected, with TP53 followed by CDKN2A being the most mutated gene in cutaneous melanoma. Furthermore, the expression analysis showed that TP53, MDM2, CDKN2A, and TP53BP1 were overexpressed, while MDM4 and CDKN2B were under-expressed in cutaneous melanoma. Overall, TCGA data revealed that among all the other p53 signaling proteins, CDKN2A was significantly higher in both sun and non-sun-exposed healthy tissues than in melanoma. Likewise, MDM4 and TP53BP1 expressions were markedly greater in non-sun-exposed healthy tissues compared to other groups. However, CDKN2B expression was higher in the sun-exposed healthy tissues than in other tissues. In addition, various genes were expressed significantly differently among males and females. In addition, CDKN2A was highly expressed in the SK-MEL-30 skin cancer cell line, whereas, Immune cell type expression analysis revealed that the MDM4 was highly expressed in naïve B-cells. Furthermore, all six genes were significantly overexpressed in extraordinarily overweight or obese tumor tissues compared to healthy tissues. MDM2 expression and tumor stage were closely related. There were differences in gene expression across patient age groups and positive nodal status. TP53 showed a positive correlation with B cells, MDM2 with CD8+T cells, macrophages and neutrophils, and MDM4 with neutrophils. CDKN2A/B had a non-significant correlation with all six types of immune cells. However, TP53BP1 was positively correlated with all five types of immune cells except B cells. Only TP53, MDM2, and CDKN2A had a role in cutaneous melanoma-specific tumor immunity. All TP53 and its regulating genes may be predictive for prognosis. The results of the present study need to be validated through future screening, in vivo, and in vitro studies.

5.
Front Immunol ; 14: 1131874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228619

RESUMO

The tumor microenvironment (TME), which includes both cellular and non-cellular elements, is now recognized as one of the major regulators of the development of primary tumors, the metastasis of which occurs to specific organs, and the response to therapy. Development of immunotherapy and targeted therapies have increased knowledge of cancer-related inflammation Since the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) limit immune cells from entering from the periphery, it has long been considered an immunological refuge. Thus, tumor cells that make their way "to the brain were believed to be protected from the body's normal mechanisms of monitoring and eliminating them. In this process, the microenvironment and tumor cells at different stages interact and depend on each other to form the basis of the evolution of tumor brain metastases. This paper focuses on the pathogenesis, microenvironmental changes, and new treatment methods of different types of brain metastases. Through the systematic review and summary from macro to micro, the occurrence and development rules and key driving factors of the disease are revealed, and the clinical precision medicine of brain metastases is comprehensively promoted. Recent research has shed light on the potential of TME-targeted and potential treatments for treating Brain metastases, and we'll use that knowledge to discuss the advantages and disadvantages of these approaches.


Assuntos
Neoplasias Encefálicas , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Imunoterapia/efeitos adversos
6.
Front Immunol ; 14: 1166487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138860

RESUMO

In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/patologia , Macrófagos , Imunoterapia , Carcinogênese/metabolismo , Microambiente Tumoral
7.
Front Mol Biosci ; 10: 1121964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825203

RESUMO

Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.

8.
Front Chem ; 11: 1325578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362004

RESUMO

Ajuga bracteosa (family: Lamiaceae), commonly known as kauri booti, is an important ethnomedicinal plant. The current research was conducted to appraise and compare the in vitro antioxidant and antibacterial profiles as well as in vivo wound healing potentials of Ajugarin I and A. bracteosa extract. Ajugarin I and polyphenols in A. bracteosa were enumerated by reversed-phase high-performance liquid chromatography analysis that confirmed significant amounts of Ajugarin I (2.2 ± 0.02 µg/mg DW) and other phenolic compounds (14 out of 17 standards). A. bracteosa (374.4 ± 0.20 µg AAE/mg of DW, 201.9 ± 0.20 µg AAE/mg of DW, 87 ± 0.30%) showed a higher antioxidant profile compared to Ajugarin I (221.8 ± 0.50 µg AAE/mg of DW, 51.8 ± 0.40 µg AAE/mg of DW, 27.65 ± 0.80%) with 1.86-, 3.89-, and 3.15-fold greater activity in ferric reducing antioxidant power, total antioxidant capacity, and free radical scavenging assays, respectively. Likewise, A. bracteosa showed antibacterial activity against 3/5 strains (MIC 25-200 µg/ml) than Ajugarin I (2/5 strains; MIC 50-200 µg/ml). Hemolytic (<2% hemolysis) and dermal toxicity tests rendered both samples non-toxic. Additionally, A. bracteosa (100 ± 2.34% at day 12; 9.33 ± 0.47 days) demonstrated 1.11- and 1.24-fold higher percent wound contraction and epithelization time, respectively, than Ajugarin I (95.6 ± 1.52% at day 12; 11.6 ± 0.47 days) as assessed by an excision wound model in mice. Histopathological examination further reinforced the better wound healing potential of A. bracteosa with good epithelization, collagen synthesis, fibroblast proliferation, and revascularization. Briefly, we endorse the significant comparative antioxidant, antibacterial, and wound healing activities of A. bracteosa and Ajugarin I and present these as prospective candidates for wound healing drugs.

9.
Int J Biol Macromol ; 220: 973-984, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35977596

RESUMO

Tumor microenvironment (TME) is a crucial regulator of tumor progression and cells in the TME release a number of molecules that are responsible for anaplasticity, invasion, metastasis of tumor, establishing stem cell niches, up-regulation and down-regulation of various pathways in cancer cells, interfering with immune surveillance and immune escape. Moreover, they can serve as diagnostic markers, and determine effective therapies. Among them, CircRNAs have gained special attention due to their involvement in mutated pathways in cancers. By functioning as a molecular sponge for miRNAs, binding with proteins, and directing selective splicing. CircRNAs modify the immunological environment of cancers to promote their growth. Besides of critical role in tumor growth, circRNAs are emerging as potential candidates as biomarkers for diagnosis cancer therapy. Also, circRNAs vaccination even offers a novel approach to tumor immunotherapy. Over the recent years, studies are advocating that circRNAs have tissue specific tumor specific expression patterns, which indicates their potential clinical utility. Especially, circRNAs have emerged as potential predictive and prognostic biomarkers. Although, there has been significant progress in deciphering the role of circRNA in cancers, literature lacks comprehensive overview on this topic. Keeping in view of these significant discoveries, this review systematically discusses circRNA and their role in the tumor in different dimensions.


Assuntos
MicroRNAs , Neoplasias , Biomarcadores , Progressão da Doença , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , RNA Circular/genética , Microambiente Tumoral/genética
10.
Front Endocrinol (Lausanne) ; 13: 1029942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601006

RESUMO

Caralluma tuberculata, a medicinal and edible plant of the genus Caralluma, belongs to the family Asclepiadaceae. Traditionally, its succulent stems are used as folk medicine for life-threatening diabetes mellitus (DM) disease. Its antidiabetic potential is ascribed to the presence of various secondary metabolites (e.g., pregnane glycosides, flavone glycosides, megastigmane glycosides, polyphenols, ferulic acid, quercetin, and bitter principles, among others) that act as effective and safe antidiabetic agents. The mechanisms of these bioactive secondary metabolites in C. tuberculata herbal medicine include lowering the blood glucose level, stimulating B cells of the pancreas to release more insulin, enhancing the sensitivity of the insulin receptor, inhibiting the action of glucagon and the hydrolysis of glycogen, and increasing the use of glucose in tissues and organ. However, overexploitation, alterations in natural environmental conditions, lower seed viability, and slow growth rate are responsible for the extinction of species from natural habitats, then becoming critically endangered species according to the International Union for Conservation of Nature Red List categories. Therefore, its limited availability does not meet the higher worldwide market demand of C. tuberculata as an antidiabetic drug. Thus, for its conservation and sustainable utilization, researchers across the globe are working on devising strategies to conserve and improve biomass along with the secondary metabolite profiles of C. tuberculata using in vitro approaches. The current review describes the recent progress on antidiabetic phytoconstituents, their cellular mechanisms, and their subsequent clinical outcomes in the drug discovery management of DM. Moreover, in vitro methods such as callus culture, micropropagation, and nano-elicitation strategies for conserving and producing bioactive secondary metabolites have been concisely reviewed and discussed.


Assuntos
Apocynaceae , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Glicosídeos , Extratos Vegetais/farmacologia , Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA