Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Pharmaceutics ; 16(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276522

RESUMO

The journal retracts the article, "Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hy-drogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation" [...].

2.
Heliyon ; 10(1): e22972, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169693

RESUMO

Magnolia champaca Linn. has traditionally been used for medicinal activity in Asia for treating various chronic diseases as well as a source of food, medicines, and other commodities. Due to the long-used history of this plant, the present study was designed to explore the in vitro, in vivo and in silico anti-inflammatory and antineoplastic properties of the methanolic extract and fractions and the pure compound isolated from the most active chloroform fraction (CHF) of the stem bark of the plant. The isolated compound from the most active CHF was characterized and identified as a glycoside, trans-syringin, through chromatographic and spectroscopic (1H-NMR and 13C-NMR) analyses. In the in vitro anti-inflammatory assay, CHF was most effective in inhibiting inflammation and hemolysis of RBCs by 73.91 ± 1.70% and 75.92 ± 0.14%, respectively, induced by heat and hypotonicity compared to standard acetylsalicylic acid. In the egg albumin denaturation assay, CME and CHF showed the highest inhibition by 56.25 ± 0.82% and 65.82 ± 3.52%, respectively, contrasted with acetylsalicylic acid by 80.14 ± 2.44%. In an in vivo anti-inflammatory assay, statistically significant (p < 0.05) decreases in the parameters of inflammation, such as paw edema, leukocyte migration and vascular permeability, were recorded in a dose-dependent manner in the treated groups. In the antineoplastic assay, 45.26 ± 2.24% and 68.31 ± 3.26% inhibition of tumor cell growth for pure compound were observed compared to 73.26 ± 3.41% for standard vincristine. Apoptotic morphologic alterations, such as membrane and nuclear condensation and fragmentation, were also found in EAC cells after treatment with the isolated bioactive pure compound. Such treatment also reversed the increased WBC count and decreased RBC count to normal values compared to the untreated EAC cell-bearing mice and the standard vincristine-treated mice. Subsequently, in silico molecular docking studies substantiated the current findings, and the isolated pure compound and standard vincristine exhibited -6.4 kcal/mol and -7.3 kcal/mol binding affinities with topoisomerase-II. Additionally, isolated pure compound and standard diclofenac showed -8.2 kcal/mol and -7.6 kcal/mol binding affinities with the COX-2 enzyme, respectively. The analysis of this research suggests that the isolated bioactive pure compound possesses moderate to potent anti-inflammatory and antineoplastic activity and justifies the traditional uses of the stem bark of M. champaca. However, further investigations are necessary to analyze its bioactivity, proper mechanism of action and clinical trials for the revelation of new drug formulations.

3.
Heliyon ; 9(11): e21539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942165

RESUMO

COPD (chronic obstructive pulmonary disease) is a medical condition that encompasses several chronic, progressive, and severe respiratory illnesses, such as emphysema and chronic bronchitis. COPD is the 4th most deadly disease in the world and its prevalence is expected to increase. Despite the abundance of information on the disease's etiology, pathophysiology, and treatment possibilities, it has long been underdiagnosed and underreported for a long time, particularly in developing countries. The symptoms of COPD result in significant impairments and significant impact on quality of life. COPD is the third leading cause of death in Pakistan. According to the published literature, COPD has been found to be associated with a serious economic burden, either the direct cost to healthcare systems in the form of frequent hospital admissions or indirect costs to patients suffering from COPD. Despite the availability of excellent medication, COPD treatment goals are frequently not achieved resulting in poor management of COPD. The recent studies revealed that due to the missing role of Pharmacists in most of the public sector hospitals of Pakistan, the COPD disease management protocols are not being properly followed. Pharmacists can help the healthcare system by implementing these management protocols that focus on patient education about the disease, prescribed medications, and proper inhalation techniques. Furthermore, the pharmacists as an effective healthcare's team member properly educate the patients about the ongoing assessments and their willingness to follow treatment recommendations and quit smoking, while referring them to smoking cessation programs as needed, following the GOLD guidelines. This aim of this clinical trial is to evaluate the impact of implementing standard treatment guidelines and the role of pharmacists in implementing GOLD guidelines for COPD management.

4.
Int J Biol Macromol ; 251: 126380, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595715

RESUMO

Bone tissue possesses intrinsic regenerative capabilities to address deformities; however, its ability to repair defects caused by severe fractures, tumor resections, osteoporosis, joint arthroplasties, and surgical reconsiderations can be hindered. To address this limitation, bone tissue engineering has emerged as a promising approach for bone repair and regeneration, particularly for large-scale bone defects. In this study, an injectable hydrogel based on kappa-carrageenan-co-N-isopropyl acrylamide (κC-co-NIPAAM) was synthesized using free radical polymerization and the antisolvent evaporation technique. The κC-co-NIPAAM hydrogel's cross-linked structure was confirmed using Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (1H NMR). The hydrogel's thermal stability and morphological behavior were assessed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Swelling and in vitro drug release studies were conducted at varying pH and temperatures, with minimal swelling and release observed at low pH (1.2) and 25 °C, while maximum swelling and release occurred at pH 7.4 and 37oC. Cytocompatibility analysis revealed that the κC-co-NIPAAM hydrogels were biocompatible, and hematoxylin and eosin (H&E) staining demonstrated their potential for tissue regeneration and enhanced bone repair compared to other experimental groups. Notably, digital x-ray examination using an in vivo bone defect model showed that the κC-co-NIPAAM hydrogel significantly improved bone regeneration, making it a promising candidate for bone defects.

5.
Cureus ; 15(6): e40305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37448399

RESUMO

INTRODUCTION: Obesity is on the rise worldwide and has emerged as a global health concern. It has presented itself as the leading cause of morbidity, disability, and healthcare utilization. Bariatric surgery is a viable treatment option that offers sustained weight loss and improvement in comorbidities. The aim of this study is to determine the perception of doctors regarding bariatric surgery and the major barriers to the referral of morbidly obese for surgery. METHOD: This study is a cross-sectional descriptive study conducted from November 1, 2022, to December 31, 2022. It involved prospective data collection through online questionnaires filled by doctors practicing in Peshawar. The sampling technique was non-probability convenience-based sampling. The sample size was 152. Doctors from all age groups and both genders were included in our study. Non-consenting doctors and those who were practicing bariatric surgery were excluded. Data were analyzed using a statistical package for social sciences (SPSS) version 25.0 (IBM Inc., Armonk, NY). Categorical variables have been presented as frequencies and percentages. Numerical variables have been presented as mean ± SD. RESULTS: A total of 152 doctors participated in our research study; 92 were physicians and 60 were surgeons. The majority of our study participants' patient load per week was >75. Around 47% believed bariatric surgery was a valuable tool in the treatment of morbid obesity. The most commonly reported barrier to referral was surgical complications or side effects (28.9%). CONCLUSION: The study concluded that the awareness regarding bariatric and metabolic surgery remains flimsy among the doctor community. Most of the physicians were unaware of the benefits of the surgical management of obesity. They also had doubts regarding the safety of the procedure. We need proper utilization of awareness strategies to overcome these barriers.

6.
Cureus ; 15(4): e37098, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37153320

RESUMO

Introduction Obesity has emerged as a major public health issue in both developed and developing countries. The prevalence of obesity is on the rise. Bariatric surgery is acknowledged as the most effective and safe solution for this problem. It has been shown to be effective in sustained weight loss and improving quality of life. The aim of this study was to identify the causes of reluctance to have surgery among patients who were potential candidates for weight loss procedures. Method Morbidly obese people who were enrolled at Khyber Teaching Hospital, Peshawar, from December 2021 to August 2022 were included in the study. It included hospitalized as well as outpatient appointments. A questionnaire was adopted as the data collection tool. Result A total of 107 patients (58 men and 49 women) were enrolled in the study. The median age was 42. Of the 107 patients, 5% (n=5) of the patients were super morbidly obese (BMI >50kg/m2). Seventy-two percent (n=77) of the population considered themselves morbidly obese. Only 22% (n=24) were physically active. Twenty percent (n=21) of the patients reported that they have or are currently trying dietary modifications for weight loss. Young females were most likely to be on dieting programs. Importantly, 56% (n=60) had never heard of bariatric surgery. Exploring the reasons for reluctance among patients revealed that the concern for surgical mortality was the major hindrance. This was followed by being not interested in committing to surgery and recovery. Concerns regarding cost and financing were also the reasons candidates didn't opt for surgical procedures to treat obesity. Conclusion The study concluded that there is a serious lack of knowledge and awareness among physicians and the general public regarding bariatric surgery. Most of the patients who were potential candidates for the procedure weren't aware that obesity had a surgical and definitive treatment. Patients who were aware of the surgical procedure were hesitant to undergo surgery for the management of their weight as they harbored misconceptions, particularly regarding the safety and efficacy of the procedure.

7.
Pharmaceutics ; 15(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839979

RESUMO

The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.

8.
Pharmaceutics ; 14(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631636

RESUMO

This study was aimed to develop novel in situ forming gels based on N-vinylcaprolactam, sodium alginate, and N,N-methylenebisacrylamide. The in situ Poly (NVRCL-g-NaAlg) gels were developed using the cold and free radical polymerization method. The structure formation, thermal stability, and porous nature of gels was confirmed by FTIR, NMR, DSC, TGA, and SEM. The tunable gelation temperature was evaluated by tube titling and rheological analysis. Optical transmittance showed that all formulations demonstrated phase transition around 33 °C. The swelling and release profile showed that gels offered maximum swelling and controlled 5-FU release at 25 °C and pH (7.4), owing to a relaxed state. Porosity and mesh size showed an effect on swelling and drug release. The in vitro degradation profile demonstrated a controlled degradation rate. An MTT assay confirmed that formulations are safe tested against Vero cells. In vitro cytotoxicity showed that 5-FU loaded gels have controlled cytotoxic potential against HeLa and MCF-7 cells (IC50 = 39.91 µg/mL and 46.82 µg/mL) compared to free 5-FU (IC50 = 50.52 µg/mL and 53.58 µg/mL). Histopathological study demonstrated no harmful effects of gels on major organs. The in vivo bioavailability in rabbits showed a controlled release in gel form (Cmax, 1433.59 ± 45.09 ng/mL) compared to a free drug (Cmax, 2263.31 ± 13.36 ng/mL) after the subcutaneous injection.

9.
Front Oncol ; 12: 832277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359382

RESUMO

This study seeks to investigate the interaction profile of the L5 protein of oncolytic adenovirus with the overexpressed surface receptors of pancreatic cancer. This is an important area of research because pancreatic cancer is one of the most fatal malignancies with a very low patient survival rate. Multiple therapies to date to improve the survival rate are reported; however, they show a comparatively low success rate. Among them, oncolytic virus therapy is a type of immunotherapy that is currently under deliberation by researchers for multiple cancer types in various clinical trials. Talimogene laherparepvec (T-VEC) is the first oncolytic virus approved by the US Food and Drug Administration (FDA) for melanoma. The oncolytic virus not only kills cancer cells but also activates the anticancer immune response. Therefore, it is preferred over others to deal with aggressive pancreatic cancer. The efficacy of therapy primarily depends on how effectively the oncolytic virus enters and infects the cancer cell. Cell surface receptors and their interactions with virus coat proteins are a crucial step for oncolytic virus entry and a pivotal determinant. The L5 proteins of the virus coat are the first to interact with host cell surface receptors. Therefore, the objective of this study is to analyze the interaction profile of the L5 protein of oncolytic adenovirus with overexpressed surface receptors of pancreatic cancer. The L5 proteins of three adenovirus serotypes HAdV2, HAdV5, and HAdV3 were utilized in this study. Overexpressed pancreatic cancer receptors include SLC2A1, MET, IL1RAP, NPR3, GABRP, SLC6A6, and TMPRSS4. The protein structures of viral and cancer cell protein were docked using the High Ambiguity Driven protein-protein DOCKing (HADDOCK) server. The binding affinity and interaction profile of viral proteins against all the receptors were analyzed. Results suggest that the HAdV3 L5 protein shows better interaction as compared to HAdV2 and HAdV5 by elucidating high binding affinity with 4 receptors (NPR3, GABRP, SLC6A6, and TMPRSS4). The current study proposed that HAdV5 or HAdV2 virus pseudotyped with the L5 protein of HAdV3 can be able to effectively infect pancreatic cancer cells. Moreover, the current study surmises that the affinity maturation of HAdV3 L5 can enhance virus attachment with all the receptors of cancer cells.

10.
Pharmaceutics ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35057025

RESUMO

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08-206.4 ± 2.26 nm, zeta potential was -17.8 ± 1.26 to -24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.

11.
J Biomol Struct Dyn ; 40(7): 3098-3109, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33170093

RESUMO

Human Norovirus belongs to a family Calciviridae, and was identified in the outbreak of gastroenteritis in Norwalk, due to its seasonal prevalence known as "winter vomiting disease." Treatment of Norovirus infection is still mysterious because there is no effective antiviral drugs or vaccine developed to protect against the infection, to eradicate the infection an effective vaccine should be developed. In this study, capsid protein (A7YK10), small protein (A7YK11), and polyprotein (A7YK09) were utilized. These proteins were subjected to B and T cell epitopes prediction by using reliable immunoinformatics tools. The antigenic and non-allergenic epitopes were selected for the subunit vaccine, which can activate cellular and humoral immune responses. Linkers joined these epitopes together. The vaccine structure was modelled and validated by using Errat, ProSA, and rampage servers. The modelled vaccine was docked with TLR-7. The stability of the docked complex was evaluated by MD simulation. To apply the concept in a wet lab, the reverse translated vaccine sequence was cloned in pET28a (+). The vaccine developed in this study requires experimental validation to ensure its effectiveness against the disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções por Caliciviridae , Norovirus , Infecções por Caliciviridae/prevenção & controle , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Vacinologia
12.
Curr Pharm Des ; 27(43): 4356-4375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34459374

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most aggressive and prevalent types of cancer, which is associated with a high rate of mortality and colossal potential of metastasis to other body organs. Conventionally, there are three commonly employed strategies for the treatment of BC including, surgery, radiations and chemotherapy; however, these modalities are associated with several deleterious effects and a high rate of relapse. OBJECTIVE: This review was aimed to critically discuss and conceptualize existing evidences related to the pharmaceutical significance and therapeutic feasibility of multi-functionalization of nanomedicines for early diagnosis and efficient treatment of BC. RESULTS: Though the implication of nanotechnology-based modalities has revolutionised the outcomes of diagnosis and treatment of BC; however, the clinical translation of these nanomedicines is facing grandeur challenges. These challenges include recognition by the reticuloendothelial system (RES), short plasma half-life, non-specific accumulation in the non-cancerous cells, and expulsion of the drug(s) by the efflux pump. To circumvent these challenges, various adaptations such as PEGylation, conjugation of targeting ligand(s), and siteresponsive behaviour (i.e., pH-responsiveness, biochemical, or thermal-responsiveness) have been adapted. Similarly, multi-functionalization of nanomedicines has emerged as an exceptional strategy to improve the pharmacokinetic profile, specific targetability to the tumor microenvironment (active targeting) and efficient internalization, and to alleviate the expulsion of internalized drug contents by silencing-off efflux pump. CONCLUSION: Critical analysis of the available evidences revealed that multi-functionalization of nanomedicines is a plausible and sustainable adaptation for early diagnosis and treatment of BC with better therapeutic outcomes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Neoplasias , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanomedicina , Nanopartículas/química , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
Pak J Pharm Sci ; 34(2): 577-583, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275832

RESUMO

Chenopodium ambrosioides is abundantly available in Malakand region. As constituents and concentrations of essential oils vary based on its geographical location, we carried our current study to extract and evaluate its possible relaxant activity in rabbits' jejunum and anti-leishmanial activity against promastigotes of Leishmania tropica. The essential oil was obtained from aerial fresh parts through steam distillation followed by GC/MS analysis. Antispasmodic activity was performed on spontaneous and KCl induced contractions. Curves for calcium concentration response (CCRCs) were prepared with and without different concentrations of essential oils and verapamil - a standard calcium channel blocker as per our reported procedures. GC/MS analysis indicated that the essential oil contains 4-carene (56.59%) and o-cymene (41.46%), the two most abundant compounds previously reported from this species. The LD50 value for acute toxicity is 279.66±2.2mg/kg. The essential oil have significant antileishmanial activity with LC50 of Log10 (1.83±0.0026) ×10-6mg/ml, potent relaxant activity on rabbits' jejunal preparations with respective EC50 = 1.46±0.15mg/ml for spontaneous activity. For KCl (80mM) induced contractions, EC50=0.26±0.02mg/ml. In CCRCs, the oil produced a right shift as exhibited by verapamil. More, its relaxant activity, which is mediated through calcium channel blocking mechanism, proves a rationale for its traditional use in gut spasm.


Assuntos
Antiprotozoários/farmacologia , Chenopodium ambrosioides , Jejuno/efeitos dos fármacos , Leishmania tropica/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Óleos Voláteis/farmacologia , Parassimpatolíticos/farmacologia , Animais , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Coelhos
14.
J Control Release ; 335: 130-157, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34015400

RESUMO

Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.


Assuntos
Nanopartículas , Neoplasias , Membrana Celular , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
Cancers (Basel) ; 13(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562376

RESUMO

The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.

16.
J Control Release ; 328: 873-894, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33137366

RESUMO

Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.


Assuntos
Encéfalo , Nanoestruturas , Causalidade , Sistemas de Liberação de Medicamentos , Nanoestruturas/toxicidade , Estresse Oxidativo
17.
J Pharm Pharmacol ; 72(4): 519-530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31868235

RESUMO

OBJECTIVES: Trans-activator of transcription (TAT), a cell penetrating peptide, has been explored to overcome resistance to penetration and transport inside the cell, therefore, suggested to be used as drug delivery vector into drug-resistant tumours. The generosity of this study was to evaluate modifiable factors (concentration, temperature, incubation time and spheroid age) on the penetration of TAT. METHODS: Multicellular tumour spheroids (MCTS) used as tumour tissue models to mimic some characteristics with in-vivo tumors. Cell monolayer and 3-, 5-, 7-day-old MCTS were incubated with TAT and effects of modifiable factors were determined quantitatively through flow cytometry, based on TAT-positive cell count (%) and mean fluorescence intensity. KEY FINDINGS: Enhancing TAT concentration (1, 5 and 25 µm), transport significantly increased (ANOVA, P < 0.0001) in cell monolayer and spheroids. However, rising temperature from 7 to 37°C (t, P > 0.05) and increasing incubation time; 20 min, 1 h and 3 h; (ANOVA, P > 0.05) were statistically non-significant. Moreover, TAT penetration declines as spheroids get older (ANOVA, P < 0.01). CONCLUSION: While exploiting MCTS as tumour tissue model, older spheroids could be preferred to target penetration-resistant cells and mimic the in-vivo microenvironment.


Assuntos
Transporte Biológico , Peptídeos Penetradores de Células/metabolismo , Transativadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Células HT29 , Humanos , Esferoides Celulares/metabolismo
18.
Sci Rep ; 9(1): 13321, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527719

RESUMO

Helicobacter Pylori is a known causal agent of gastric malignancies and peptic ulcers. The extremophile nature of this bacterium is protecting it from designing a potent drug against it. Therefore, the use of computational approaches to design antigenic, stable and safe vaccine against this pathogen could help to control the infections associated with it. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a multi-epitopes subunit vaccine against H. Pylori. A total of 7 CTL and 12 HTL antigenic epitopes based on c-terminal cleavage and MHC binding scores were predicted from the four selected proteins (CagA, OipA, GroEL and cagA). The predicted epitopes were joined by AYY and GPGPG linkers. Β-defensins adjuvant was added to the N-terminus of the vaccine. For validation, immunogenicity, allergenicity and physiochemical analysis were conducted. The designed vaccine is likely antigenic in nature and produced robust and substantial interactions with Toll-like receptors (TLR-2, 4, 5, and 9). The vaccine developed was also subjected to an in silico cloning and immune response prediction model, which verified its efficiency of expression and the immune system provoking response. These analyses indicate that the suggested vaccine may produce particular immune responses against H. pylori, but laboratory validation is needed to verify the safety and immunogenicity status of the suggested vaccine design.


Assuntos
Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Helicobacter pylori/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Simulação por Computador , Desenho de Fármacos , Helicobacter pylori/genética , Humanos , Modelos Moleculares , Proteoma , Vacinas/imunologia , Fatores de Virulência
19.
Infect Genet Evol ; 73: 390-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173935

RESUMO

The Mayaro virus (MAYV) belongs to genus "Alphavirus" and family "Togaviridae". MAYV has distribution in the Amazonia, Central and Northeastern regions of Brazil. The abundance of mosquito vector Haemagogus janthinomys has major role in the outbreaks of arthralgia disease in Brazil. Vaccination or immunization is an alternative approach for the protection against this disease. To search the effective candidate for vaccine against Mayaro virus, various immunoinformatics tools were used to predict both the B and T cell epitopes from five structural polyproteins (capsid, E2, 6K, E3and E1). A multi subunit vaccine was designed and the final sequence was modeled for docking with TLR-3. Human b defensin based on previous studies was used as linker. The docked complexes of vaccine-TLR-3 were then subjected to dynamics stability and RMSD and RMSF results suggested that the complexes are stable. Further, to validate our final vaccine construct, in silico cloning was carried out using E. coli as host. The CAI value of 0.96 suggests that the vaccine construct properly expresses in the host. The current findings will be useful for the future experimental validations to ratify the immunogenicity and safety of the supposed structure of vaccine, and ultimately to treat the Mayaro virus, associated infections.


Assuntos
Infecções por Alphavirus/imunologia , Alphavirus/imunologia , Formação de Anticorpos/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Brasil , Biologia Computacional , Simulação por Computador , Escherichia coli/imunologia , Humanos , Modelos Moleculares , Poliproteínas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinologia/métodos
20.
Drug Deliv Transl Res ; 9(3): 721-734, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30895453

RESUMO

On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides "stealth" properties to nanocarrier's surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Animais , Antineoplásicos/química , Humanos , Nanomedicina , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA