Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985402

RESUMO

Finding structurally similar compounds in compound databases is highly efficient and is widely used in present-day drug discovery methodology. The most-trusted and -followed similarity indexing method is Tanimoto similarity indexing. Epigenetic proteins like histone deacetylases (HDACs) inhibitors are traditionally used to target cancer, but have only been investigated very recently for their possible effectiveness against rheumatoid arthritis (RA). The synthetic drugs that have been identified and used for the inhibition of HDACs include SAHA, which is being used to inhibit the activity of HDACs of different classes. SAHA was chosen as a compound of high importance as it is reported to inhibit the activity of many HDAC types. Similarity searching using the UNPD database as a reference identified aglaithioduline from the Aglaia leptantha compound as having a ~70% similarity of molecular fingerprints with SAHA, based on the Tanimoto indexing method using ChemmineR. Aglaithioduline is abundantly present in the shell and fruits of A. leptantha. In silico studies with aglaithioduline were carried out against the HDAC8 protein target and showed a binding affinity of -8.5 kcal mol. The complex was further subjected to molecular dynamics simulation using Gromacs. The RMSD, RMSF, compactness and SASA plots of the target with aglaithioduline, in comparison with the co-crystallized ligand (SAHA) system, showed a very stable configuration. The results of the study are supportive of the usage of A. leptantha and A. edulis in Indian traditional medicine for the treatment of pain-related ailments similar to RA. Our study therefore calls for further investigation of A. leptantha and A. edulis for their potential use against RA by targeting epigenetic changes, using in vivo and in vitro studies.


Assuntos
Artrite Reumatoide , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Amidas , Simulação de Dinâmica Molecular , Epigênese Genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Simulação de Acoplamento Molecular , Histona Desacetilases/genética , Proteínas Repressoras
2.
Gels ; 8(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877488

RESUMO

Biosurfactants are eco-friendly surface-active molecules recommended for enhanced oil recovery techniques. In the present study, a potential lipopeptide (biosurfactant) encoding the iturin A gene was synthesized from Bacillus aryabhattai. To improvise the yield of the lipopeptide for specific applications, current research tends toward engineering and expressing recombinant peptides. An iturin A gene sequence was codon-optimized, amplified with gene-specific primers, and ligated into the pET-32A expression vector to achieve high-level protein expression. The plasmid construct was transformed into an E. coli BL21 DE3 host to evaluate the expression. The highly expressed recombinant iturin A lipopeptide was purified on a nickel nitrilotriacetic acid (Ni-NTA) agarose column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the purity and molecular mass of iturin A was 41 kDa. The yield of recombinant iturin A was found to be 60 g/L with a 6.7-fold increase in comparison with our previously published study on the wild strain. The approach of cloning a functional fragment of partial iturin A resulted in the increased production of the lipopeptide. When motor oil was used, recombinant protein iturin A revealed a biosurfactant property with a 74 ± 1.9% emulsification index (E24). Purified recombinant protein iturin A was characterized by mass spectrometry. MALDI-TOF spectra of trypsin digestion (protein/trypsin of 50:1 and 25:1) showed desired digested mass peaks for the protein, further confirming the identity of iturin A. The iturin A structure was elucidated based on distinctive spectral bands in Raman spectra, which revealed the presence of a peptide backbone and lipid. Recombinant iturin A was employed for enhanced oil recovery through a sand-packed column that yielded 61.18 ± 0.85% additional oil. Hence, the novel approach of the high-level expression of iturin A (lipopeptide) as a promising biosurfactant employed for oil recovery from Bacillus aryabhattai is not much reported. Thus, recombinant iturin A demonstrated its promising ability for efficient oil recovery, finding specific applications in petroleum industries.

3.
Sci Rep ; 11(1): 19592, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599240

RESUMO

The recent work investigates the heat transfer attributes in the flow of engine oil which comprises of nano-particles such as Cu and TiO2. The performance of Copper and Titanium oxide is over looked in the flow of engine oil. The energy equation is amended by the features of thermal radiation, viscous dissipation, and heat generation. The mathematical model signifies the porosity, entropy generation and moving flat horizontal surface with the non-uniform stretching velocity. Quasi-linearization, which is a persuasive numerical technique to solve the complex coupled differential equations, is used to acquire the numerical solution of the problem. Flow and heat transfer aspects of Cu-TiO2 in the flow are examined against the preeminent parameters. The flow is significantly affected by the thermal jump conditions and porous media. It is observed here that the temperature as well as heat transport rate is reduced with the effect of involved preeminent parameters. However, such fluids must be used with caution in applications where a control on the heat transfer is required. We may conclude that the recent study will provide assistance in thermal cooling systems such as engine and generator cooling, nuclear system cooling, aircraft refrigeration system, and so forth.

4.
Polymers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502908

RESUMO

Natural polymers have attracted a lot of interest in researchers of late as they are environmentally friendly, biocompatible, and possess excellent characters. Membranes forming natural polymers have provided a whole new dimension to the separation technology. In this work, chitosan-gelatin blend membranes were fabricated using chitosan as the base and varying the amount of gelatin. Transport, mechanical, and surface characteristics of the fabricated membranes were examined in detail by means of the characterizing techniques such as Fourier transform infrared spectroscopy, differential scanning colorimetry, wide angle X-ray diffraction, scanning electron microscope, and thermogravimetric analysis. In order to analyze the water affinity of the developed blend chitosan-gelatin membranes, the percentage degree of swelling was examined. Out of the fabricated membranes, the membrane loaded with 15 mass% of gelatin exhibited the better pervaporation performance with a pervaporation separation index value of 266 at 30 °C for the solution containing 10% in terms of the mass of water, which is the highest among the contemporary membranes. All the fabricated membranes were stable during the pervaporation experiments, and permeation flux of water for the fabricated membranes was dominant in the overall total permeation flux, signifying that the developed membranes could be chosen for efficient separation of water-isopropanol mixture on a larger scale.

5.
Materials (Basel) ; 15(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009408

RESUMO

The development of radiation attenuation materials with lean cross-sections is the need of the hour. However, the inherent threat of radiations accompanying these processes is of major concern. Thus, in an attempt to shield unnecessary radiations, several novel materials have been fabricated alongside the conventional materials available. Yet, there is a need for cost-effective, efficient shielding materials that have good mechanical strength and effective shielding properties. The present work investigates ceramic composite behaviors and radiation shielding capacity reinforced with lead oxide nano-powder. Developed nano-lead-based cement composites were subjected to mechanical tests to determine flexural and compressive strengths to check their suitability for structural applications. Further, the gamma attenuation test of the composites was conducted to determine their neutron absorption capacity. The addition of nano-leadoxide in the control beams was varied from 0.7 to 0.95 and 1 wt.% of the ceramic matrix. The percentage of nano-leadoxide that gives the best results in both enhanced properties and economic aspects was determined to be 0.6 wt.% of the cement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA