Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 730, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075388

RESUMO

BACKGROUND: Gut dysbiosis has been associated with colorectal cancer (CRC), the third most prevalent cancer in the world. This study compares microbiota taxonomic and abundance results obtained by 16S rRNA gene sequencing (16S) and whole shotgun metagenomic sequencing to investigate their reliability for bacteria profiling. The experimental design included 156 human stool samples from healthy controls, advanced (high-risk) colorectal lesion patients (HRL), and CRC cases, with each sample sequenced using both 16S and shotgun methods. We thoroughly compared both sequencing technologies at the species, genus, and family annotation levels, the abundance differences in these taxa, sparsity, alpha and beta diversities, ability to train prediction models, and the similarity of the microbial signature derived from these models. RESULTS: As expected, the results showed that 16S detects only part of the gut microbiota community revealed by shotgun, although some genera were only profiled by 16S. The 16S abundance data was sparser and exhibited lower alpha diversity. In lower taxonomic ranks, shotgun and 16S highly differed, partially due to a disagreement in reference databases. When considering only shared taxa, the abundance was positively correlated between the two strategies. We also found a moderate correlation between the shotgun and 16S alpha-diversity measures, as well as their PCoAs. Regarding the machine learning models, only some of the shotgun models showed some degree of predictive power in an independent test set, but we could not demonstrate a clear superiority of one technology over the other. Microbial signatures from both sequencing techniques revealed taxa previously associated with CRC development, e.g., Parvimonas micra. CONCLUSIONS: Shotgun and 16S sequencing provide two different lenses to examine microbial communities. While we have demonstrated that they can unravel common patterns (including microbial signatures), shotgun often gives a more detailed snapshot than 16S, both in depth and breadth. Instead, 16S will tend to show only part of the picture, giving greater weight to dominant bacteria in a sample. Therefore, we recommend choosing one or another sequencing technique before launching a study. Specifically, shotgun sequencing is preferred for stool microbiome samples and in-depth analyses, while 16S is more suitable for tissue samples and studies with targeted aims.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Análise de Sequência de DNA/métodos , Masculino , Metagenoma , Feminino
2.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891924

RESUMO

Recent studies have revealed the impact of human papillomavirus (HPV) infections on the cervicovaginal microbiome; however, few have explored the utility of self-collected specimens (SCS) for microbiome detection, obtained using standardised methods for HPV testing. Here, we present a proof-of-concept analysis utilising Oxford Nanopore sequencing of the 16S rRNA gene in paired samples collected either by the patient using an Evalyn Brush or collected by a physician using liquid-based cytology (LBC). We found no significant differences in the α-diversity estimates between the SCS and LBC samples. Similarly, when analysing ß-diversity, we observed a close grouping of paired samples, indicating that both collection methods detected the same microbiome features. The identification of genera and Lactobacillus species in each sample allowed for their classification into community state types (CSTs). Notably, paired samples had the same CST, while HPV-positive and -negative samples belonged to distinct CSTs. As previously described in other studies, HPV-positive samples exhibited heightened bacterial diversity, reduced Lactobacillus abundance, and an increase in genera like Sneathia or Dialister. Altogether, this study showed comparable results between the SCS and LBC samples, underscoring the potential of self-sampling for analysing the microbiome composition in cervicovaginal samples initially collected for HPV testing in the context of cervical cancer screening.


Assuntos
Colo do Útero , Microbiota , Infecções por Papillomavirus , RNA Ribossômico 16S , Vagina , Humanos , Feminino , Microbiota/genética , Vagina/microbiologia , Vagina/virologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/microbiologia , Infecções por Papillomavirus/diagnóstico , RNA Ribossômico 16S/genética , Colo do Útero/microbiologia , Colo do Útero/virologia , Manejo de Espécimes/métodos , Adulto , Estudo de Prova de Conceito , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Pessoa de Meia-Idade
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256252

RESUMO

Colorectal cancer (CRC), the third most common cancer globally, has shown links to disturbed gut microbiota. While significant efforts have been made to establish a microbial signature indicative of CRC using shotgun metagenomic sequencing, the challenge lies in validating this signature with 16S ribosomal RNA (16S) gene sequencing. The primary obstacle is reconciling the differing outputs of these two methodologies, which often lead to divergent statistical models and conclusions. In this study, we introduce an algorithm designed to bridge this gap by mapping shotgun-derived taxa to their 16S counterparts. This mapping enables us to assess the predictive performance of a shotgun-based microbiome signature using 16S data. Our results demonstrate a reduction in performance when applying the 16S-mapped taxa in the shotgun prediction model, though it retains statistical significance. This suggests that while an exact match between shotgun and 16S data may not yet be feasible, our approach provides a viable method for comparative analysis and validation in the context of CRC-associated microbiome research.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Algoritmos , Microbioma Gastrointestinal/genética , Pessoal de Saúde , Neoplasias Colorretais/genética
4.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36612118

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is generally implemented through a two-step population screening approach based on the use of Fecal Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover microbial taxa, taxon co-occurrence and metabolic features significantly associated with different colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier which reduces the current false positive rate while maximizing the inclusion of CRC and clinically relevant samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA