Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 11(7)2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252545

RESUMO

BACKGROUND: BK polyomavirus (BKV) reactivates from latency after immunosuppression in renal transplant patients, resulting in BKV-associated nephropathy (BKVAN). BKVAN has emerged as an important cause of graft dysfunction and graft loss among transplant patients. BKV infection in kidney transplant patients has increased over recent decades which correlates with the use of more potent immunosuppressive therapies. BKV infection of the Glomerular Vascular Unit (GVU) consisting of podocytes, mesangial cells, and glomerular endothelial cells could lead to glomerular inflammation and contribute to renal fibrosis. The effects of BKV on GVU infectivity have not been reported. METHODS: We infected GVU cells with the Dunlop strain of BKV. Viral infectivity was analyzed by microscopy, immunofluorescence, Western blot analysis, and quantitative RT-PCR (qRT-PCR). The expression of specific proinflammatory cytokines induced by BKV was analyzed by qRT-PCR. RESULTS: BKV infection of podocytes, mesangial cells, and glomerular endothelial cells was confirmed by qRT-PCR and positive staining with antibodies to the BKV VP1 major capsid protein, or the SV40 Large T-Antigen. The increased transcriptional expression of interferon gamma-induced protein 10 (CXCL10/IP-10) and interferon beta (IFNß) was detected in podocytes and mesangial cells at 96 h post-infection. CONCLUSIONS: All cellular components of the GVU are permissive for BKV replication. Cytopathic effects induced by BKV in podocytes and glomerular endothelial cells and the expression of CXCL10 and IFNß genes by podocytes and mesangial cells may together contribute to glomerular inflammation and cytopathology in BKVAN.


Assuntos
Vírus BK/fisiologia , Nefropatias/virologia , Glomérulos Renais/virologia , Infecções por Polyomavirus/virologia , Complicações Pós-Operatórias/virologia , Vírus BK/genética , Citocinas/genética , Citocinas/imunologia , Humanos , Nefropatias/genética , Nefropatias/imunologia , Glomérulos Renais/imunologia , Transplante de Rim/efeitos adversos , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/imunologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/imunologia , Ativação Viral , Replicação Viral
2.
PLoS Pathog ; 11(5): e1004864, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020637

RESUMO

Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1) infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs) and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1) links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.


Assuntos
Linfócitos T CD4-Positivos/virologia , Desoxirribonucleotídeos/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Replicação Viral , Apoptose , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Células Cultivadas , Replicação do DNA , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Humanos , Ativação Linfocitária , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Virol ; 88(1): 592-603, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173214

RESUMO

Apolipoprotein L1 (APOL1) is a major component of the human innate immune response against African trypanosomes. Although the mechanism of the trypanolytic activity of circulating APOL1 has been recently clarified, the intracellular function(s) of APOL1 in human cells remains poorly defined. Like that of many genes linked to host immunity, APOL1 expression is induced by proinflammatory cytokines gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Additionally, IFN-γ-polarized macrophages that potently restrict HIV-1 replication express APOL1, which suggests that APOL1 may contribute to HIV-1 suppression. Here, we report that APOL1 inhibits HIV-1 replication by multiple mechanisms. We found that APOL1 protein targeted HIV-1 Gag for degradation by the endolysosomal pathway. Interestingly, we found that APOL1 stimulated both endocytosis and lysosomal biogenesis by promoting nuclear localization of transcription factor EB (TFEB) and expression of TFEB target genes. Moreover, we demonstrated that APOL1 depletes cellular viral accessory protein Vif, which counteracts the host restriction factor APOBEC3G, via a pathway involving degradation of Vif in lysosomes and by secretion of Vif in microvesicles. As a result of Vif depletion by APOL1, APOBEC3G was not degraded and reduced infectivity of progeny virions. In support of this model, we also showed that endogenous expression of APOL1 in differentiated U937 monocytic cells stimulated with IFN-γ resulted in a reduced production of virus particles. This finding supports the hypothesis that induction of APOL1 contributes to HIV-1 suppression in differentiated monocytes. Deciphering the precise mechanism of APOL1-mediated HIV-1 restriction may facilitate the design of unique therapeutics to target HIV-1 replication.


Assuntos
Apolipoproteínas/fisiologia , Infecções por HIV/imunologia , HIV-1/isolamento & purificação , Imunidade Inata , Lipoproteínas HDL/fisiologia , Apolipoproteína L1 , Diferenciação Celular , Linhagem Celular , Endocitose , Citometria de Fluxo , Produtos do Gene gag/imunologia , HIV-1/fisiologia , Humanos , Interferons/imunologia , Macrófagos/imunologia , Replicação Viral
4.
Virology ; 400(1): 68-75, 2010 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-20153011

RESUMO

Human cytidine deaminases, including APOBEC3G (A3G) and A3F, are part of a cellular defense system against retroviruses and retroelements including non-LTR retrotransposons LINE-1 (L1) and Alu. Expression of cellular A3 proteins is sufficient for inhibition of L1 and Alu retrotransposition, but the effect of A3 proteins transferred in exosomes on retroelement mobilization is unknown. Here, we demonstrate for the first time that exosomes secreted by CD4(+)H9 T cells and mature monocyte-derived dendritic cells encapsidate A3G and A3F and inhibit L1 and Alu retrotransposition. A3G is the major contributor to the inhibitory activity of exosomes, however, the contribution of A3F in H9 exosomes cannot be excluded. Additionally, we show that exosomes encapsidate mRNAs coding for A3 proteins. A3G mRNA, and less so A3F, was enriched in exosomes secreted by H9 cells. Exosomal A3G mRNA was functional in vitro. Whether exosomes inhibit retrotransposons in vivo requires further investigation.


Assuntos
Elementos Alu , Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , Exossomos/enzimologia , Exossomos/genética , Elementos Nucleotídeos Longos e Dispersos , Desaminase APOBEC-3G , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Células Dendríticas/metabolismo , Humanos , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae/genética
5.
Exp Cell Res ; 315(11): 1875-88, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19327352

RESUMO

We hereby report studies that suggest a role for serum exosomes in the anchorage-independent growth (AIG) of tumor cells. In AIG assays, fetal bovine serum is one of the critical ingredients. We therefore purified exosomes from fetal bovine serum and examined their potential to promote growth of breast carcinoma cells in soft agar and Matrigel after reconstituting them into growth medium (EEM). In all the assays, viable colonies were formed only in the presence of exosomes. Some of the exosomal proteins we identified, have been documented by others and could be considered exosomal markers. Labeled purified exosomes were up-taken by the tumor cells, a process that could be competed out with excess unlabeled vesicles. Our data also suggested that once endocytosed by a cell, the exosomes could be recycled back to the conditioned medium from where they can be up-taken by other cells. We also demonstrated that low concentrations of exosomes activate MAP kinases, suggesting a mechanism by which they maintain the growth of the tumor cells in soft agar. Taken together, our data demonstrate that serum exosomes form a growth promoting platform for AIG of tumor cells and may open a new vista into cancer cell growth in vivo.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Adesão Celular/fisiologia , Exossomos/fisiologia , Proteínas Sanguíneas/fisiologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Exossomos/ultraestrutura , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Microscopia Eletrônica de Transmissão , Proteômica , Espectrometria de Massas em Tandem , alfa-2-Glicoproteína-HS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA