Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 22(12): 3913-3919, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967571

RESUMO

OBJECTIVE: Breast cancer is the most common case of cancers. Apitheraphy has been traditionally used for abundance diseases. This study aims to evaluate and compare the anti-breast cancer activity of melittin from Indonesia's Apic cerana as a potential drug for treating breast cancer. METHODS: Apis cerana bee venom (BV) was collected from a bee farm in Cikurutung, Bandung using an electrical venom device. The BV was then purified using the ÄKTA Start system and HiTrap™ SP HP cation exchange chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to identify melittin based on its molecular mass and lowry's protein assay to measure melittin concentration. Melittin cytotoxicity was measured with brine shrimp lethality test (BSLT), while MCF-7 breast cancer cells MTT assay was used to measure its anti-breast cancer activity, based on inhinition rate. RESULTS: 95.432 µg/mL melittin is purified from 62.8 mg/L BV, using  cation exchange chromatography. Melittin in vitro analysis with MCF-7 MTT assay is used to determine anti-breast cancer activity in dose dependent manner. Furthermore, melttin BSLT result showed a LC50 16.67675 µg/mL. Therefore, the MTT assay  was conducted in 5, 10 and 15 µg/mL with MCF-7 inhibition values of 0.768 ± 0.014, 3.303 ± 0.011, and 35.714 ± 0.009 %, respectively. CONCLUSION: Indonesia's Apis cerana has the potential to be used as a therapeutic peptide for breast cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Abelhas , Neoplasias da Mama/tratamento farmacológico , Meliteno/farmacologia , Animais , Feminino , Humanos , Indonésia , Células MCF-7/efeitos dos fármacos
2.
Sci Rep ; 10(1): 9955, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572057

RESUMO

Cancer stem cells (CSCs) are a class of cancer cells characterized by self-renewal, differentiation and tumorigenic potential. We previously established a model of CSCs by culturing mouse induced pluripotent stem cells (miPSCs) for four weeks in the presence of a conditioned medium (CM) of cancer cell lines, which functioned as the tumor microenvironment. Based on this methodology of developing CSCs from miPSCs, we assessed the risk of 110 non-mutagenic chemical compounds, most of which are known as inhibitors of cytoplasmic signaling pathways, as potential carcinogens. We treated miPSCs with each compound for one week in the presence of a CM of Lewis lung carcinoma (LLC) cells. However, one-week period was too short for the CM to convert miPSCs into CSCs. Consequently, PDO325901 (MEK inhibitor), CHIR99021 (GSK-3ß inhibitor) and Dasatinib (Abl, Src and c-Kit inhibitor) were found to confer miPSCs with the CSC phenotype in one week. The tumor cells that survived exhibited stemness markers, spheroid formation and tumorigenesis in Balb/c nude mice. Hence, we concluded that the three signal inhibitors accelerated the conversion of miPSCs into CSCs. Similarly to our previous study, we found that the PI3K-Akt signaling pathway was upregulated in the CSCs. Herein, we focused on the expression of relative genes after the treatment with these three inhibitors. Our results demonstrated an increased expression of pik3ca, pik3cb, pik3r5 and pik3r1 genes indicating class IA PI3K as the responsible signaling pathway. Hence, AKT phosphorylation was found to be up-regulated in the obtained CSCs. Inhibition of Erk1/2, tyrosine kinase, and/or GSK-3ß was implied to be involved in the enhancement of the PI3K-AKT signaling pathway in the undifferentiated cells, resulting in the sustained stemness, and subsequent conversion of miPSCs into CSCs in the tumor microenvironment.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Inibidores Enzimáticos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais , Microambiente Tumoral , Animais , Benzamidas/farmacologia , Carcinoma Pulmonar de Lewis/patologia , Transformação Celular Neoplásica , Células Cultivadas , Dasatinibe/farmacologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Feminino , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia
3.
Br J Cancer ; 122(9): 1378-1390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203212

RESUMO

BACKGROUND: Liver cancer is the second most common cause of cancer-related death. Every type of tumours including liver cancer contains cancer stem cells (CSCs). To date, the molecular mechanism regulating the development of liver CSCs remains unknown. METHODS: In this study, we tried to generate a new model of liver CSCs by converting mouse induced pluripotent stem cells (miPSCs) with hepatocellular carcinoma (HCC) cell line Huh7 cells conditioned medium (CM). miPSCs treated with CM were injected into the liver of BALB/c nude mice. The developed tumours were then excised and analysed. RESULTS: The primary cultured cells from the malignant tumour possessed self-renewal capacity, differentiation potential and tumorigenicity in vivo, which were found rich in liver cancer-associated markers as well as CSC markers. CONCLUSIONS: We established a model of liver CSCs converting from miPS and showed different stages of stemness during conversion process. Our CSC model will be important to assess the molecular mechanisms necessary to develop liver CSCs and could help in defeating liver cancer.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818864

RESUMO

Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15⁻20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.


Assuntos
Receptores de Hialuronatos/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/uso terapêutico , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicosilação , Humanos , Lipossomos/ultraestrutura , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia
5.
Nanotechnology ; 30(5): 055101, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499457

RESUMO

The surface reactivity of gold nanoparticles (AuNPs) is receiving attention as a radiosensitizer of cancer cells for radiation therapy and/or as a drug carrier to target cells. This study demonstrates the potential of DNA-AuNPs (prepared by mixing calf thymus DNA with HAuCl4 solution) as a radiosensitizer of human glioma cells that have cancer stem cell (CSC)-like properties, to reduce their survival. CSC-like U251MG-P1 cells and their parental glioblastoma U251MG cells are treated with a prepared DNA-AuNP colloid. The radiosensitivity of the resultant AuNP-associated cells are significantly enhanced. To reveal the mechanism by which survival is reduced, the generation of reactive oxygen species (ROS), apoptosis induction, or DNA damage in the cells is assayed using the fluorescent dye DCFDA, annexin V-FITC/PI, and foci formation of γ-H2AX, respectively. X-ray irradiation with administration of AuNPs overcomes the radioresistance of U251MG-P1 cells. It does not induce ROS generation or apoptosis in the cells but enhances the number of abnormal nuclei with abundant γ-H2AX foci, which is judged as cell death by mitotic catastrophe. The AuNP association with the cells effectively induces mitotic catastrophe in x-ray-irradiated CSC-like cells, implicating that DNA-AuNPs might be a promising tool to develop an efficient radiosensitizer against CSC.


Assuntos
DNA/administração & dosagem , Glioma/radioterapia , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Anexinas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Corantes Fluorescentes/administração & dosagem , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Glioma/metabolismo , Histonas/metabolismo , Humanos , Mitose/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495404

RESUMO

We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100-150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.


Assuntos
Doxorrubicina/análogos & derivados , Glioblastoma/genética , Receptores de Hialuronatos/genética , Proteínas Recombinantes de Fusão , Venenos de Escorpião/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Concentração Inibidora 50 , Fator 4 Semelhante a Kruppel , Metaloproteinase 2 da Matriz , Camundongos , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Cancer Res ; 6(12): 2799-2815, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042501

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA