Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 7(1): 239-251, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997353

RESUMO

Necrotic enteritis (NE) is an important enteric disease in poultry and has become a major concern in poultry production in the post-antibiotic era. The infection with NE can damage the intestinal mucosa of the birds leading to impaired health and, thus, productivity. To gain a better understanding of how NE impacts the gut function of infected broilers, global mRNA sequencing (RNA-seq) was performed in the jejunum tissue of NE challenged and non-challenged broilers to identify the pathways and genes affected by this disease. Briefly, to induce NE, birds in the challenge group were inoculated with 1 mL of Eimeria species on day 9 followed by 1 mL of approximately 108 CFU/mL of a NetB producing Clostridium perfringens on days 14 and 15. On day 16, 2 birds in each treatment were randomly selected and euthanized and the whole intestinal tract was evaluated for lesion scores. Duodenum tissue samples from one of the euthanized birds of each replicate (n = 4) was used for histology, and the jejunum tissue for RNA extraction. RNA-seq analysis was performed with an Illumina RNA HiSeq 2000 sequencer. The differentially expressed genes (DEG) were identified and functional analysis was performed in DAVID to find protein-protein interactions (PPI). At a false discovery rate threshold <0.05, a total of 377 DEG (207 upregulated and 170 downregulated) DEG were identified. Pathway enrichment analysis revealed that DEG were considerably enriched in peroxisome proliferator-activated receptors (PPAR) signaling (P < 0.01) and ß-oxidation pathways (P < 0.05). The DEG were mostly related to fatty acid metabolism and degradation (cluster of differentiation 36 [CD36], acyl-CoA synthetase bubblegum family member-1 [ACSBG1], fatty acid-binding protein-1 and -2 [FABP1] and [FABP2]; and acyl-coenzyme A synthetase-1 [ACSL1]), bile acid production and transportation (acyl-CoA oxidase-2 [ACOX2], apical sodium-bile acid transporter [ASBT]) and essential genes in the immune system (interferon-, [IFN-γ], LCK proto-oncogene, Src family tyrosine kinase [LCK], zeta chain of T cell receptor associated protein kinase 70 kDa [ZAP70], and aconitate decarboxylase 1 [ACOD1]). Our data revealed that pathways related to fatty acid digestion were significantly compromised which thereby could have affected metabolic and immune responses in NE infected birds.

2.
Poult Sci ; 100(5): 101049, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744616

RESUMO

The present study was conducted to investigate the effect of feeding the different levels of the dietary fat on the expression of genes encoding proteins involving energy metabolism, oxidative phosphorylation, and lipid synthesis including peroxisome proliferator-activated receptor gamma (PPARγ) of laying hens in the intestine. Birds fed diets with 3 levels of fat, that is, low (LF), medium (MF), and high fat (HF) were reared from 22 to 42 wk of age. Jejunum tissue was collected at week 42 for gene expression analysis. Dietary fat content as ether extract, net energy to AME ratio, and CP content of 3 treatment groups were as follows: LF: 25, 0.735, 187 (g/kg, DM); MF: 61, 0.739, 185 (g/kg, DM); HF: 73, 0.752, 181 (g/kg, DM). The BW, fat pad weight (g), fat pad-to-BW ratio (%) was the same for all the treatments (P > 0·05). Birds fed a diet containing HF increased the AME daily intake per metabolic BW (BW0.75) (P < 0.05). The expression of jejunal PPARγ was increased in the birds fed MF than that fed LF (P < 0.05). Dietary fat level did not affect the expression of other genes: protein kinase AMP-activated noncatalytic subunit gamma 2, NADH dehydrogenase subunit 2, succinate dehydrogenase complex flavoprotein subunit A, ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1, cytochrome c oxidase subunit III, ATP synthase subunit alpha, avian adenine nucleotide translocator, and acetyl-CoA carboxylase alpha (P > 0·05). The mitochondrial count per cell showed no difference among the 3 groups with different dietary treatments (P > 0·05). The results suggest that PPARγ may be important to the energy expenditure during nutrient absorption, digestion, and metabolism, and respiratory chain complexes, and other genes involving mitochondrial energy metabolism and lipogenesis may be less responsive to dietary treatment.


Assuntos
Gorduras na Dieta , PPAR gama , Ração Animal/análise , Animais , Galinhas/genética , Dieta/veterinária , Feminino , PPAR gama/genética , Regulação para Cima
3.
Poult Sci ; 100(3): 100886, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33516477

RESUMO

The primary cause of necrotic enteritis (NE) disease in chickens is the NetB-positive Clostridium perfringens bacterium. Many factors are known to affect the severity of NE in the challenge models of broiler chickens, and one of these factors is the virulence of C. perfringens strain. This study was conducted to evaluate the effect of 2 pathogenic C. perfringens strains in a NE challenge model on gut health and mRNA expression of genes encoding apoptosis, tight junction, immunity, and nutrient transporters in broilers. Day-old Ross-308 male broilers (n = 468) were allocated in a 2 × 3 factorial arrangement of treatments with in-feed antibiotics (no or yes) and challenge (Non, C. perfringens strain NE18, and C. perfringens strain NE36) as the factors. The birds in the challenged groups were inoculated with Eimeria species on day 9 and with a fresh suspension of C. perfringens NE18 or NE36 on day 14 and 15. Sample collection was performed on 2 birds of each pen on day 16. Necrotic enteritis challenge, impaired feed conversion ratio during day 0 to 16 compared with the control group where the effect of the NE36 challenge was more severe than that with NE18 (P < 0.001). The mRNA expression of mucin-2, immunoglobulin-G, occludin (P < 0.001), and tight junction protein-1 (P < 0.05) genes were downregulated in both challenged groups compared with the nonchallenged counterparts. Antibiotic supplementation, on the other hand, increased weight gain, and feed intake in all challenged birds (P < 0.01), but upregulated mucin-5ac and alanine, serine, cysteine, and threonine transporter-1 (P < 0.05) only in the NE18 challenged birds. The challenge with NE36 significantly upregulated caspase-8 and claudin-1 (P < 0.001), but downregulated glucose transporter-2 (P < 0.001) compared with the NE18 challenge. These results suggest that NE challenge is detrimental to the performance of broilers through compromised intestinal health, and different C. perfringens strains can affect the severity of the disease through modulating the expression of intestinal genes encoding proteins responsible for apoptosis, gut integrity, immunity, mucus production, and nutrient transporters.


Assuntos
Infecções por Clostridium , Enterite , Regulação da Expressão Gênica , Doenças das Aves Domésticas , Ração Animal/análise , Animais , Galinhas/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/fisiopatologia , Infecções por Clostridium/veterinária , Clostridium perfringens/classificação , Clostridium perfringens/patogenicidade , Enterite/microbiologia , Enterite/fisiopatologia , Enterite/veterinária , Perfilação da Expressão Gênica , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/fisiopatologia
4.
BMC Genomics ; 19(1): 208, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558897

RESUMO

BACKGROUND: Measures to improve bird performance have been sought due to the imminent phase out of in-feed antibiotics in poultry and continued demand for higher poultry feeding efficiency. Increasing grain particle size and dietary fibre may improve gizzard function, digestive efficiency and nutrient absorption. This study was conducted to evaluate the effect increased particle size of corn and inclusion of sugarcane bagasse (SB) on mRNA expression of genes encoding digestive enzymes and nutrient transporters in broilers. RESULTS: A total of 336 day-old Ross 308 males were assigned in a 2 × 2 factorial arrangement of treatments with corn particle size - coarse 3576 µm or fine 1113 µm geometric mean diameter, and SB - 0 or 2% inclusion. Feed conversion ratio (FCR), weight gain and feed intake were measured from d 0-10 and d 10-24. The relative gizzard weight and mRNA expression of genes encoding digestive enzymes and intestinal nutrient transporters were measured on d 24. During d 10-24, a particle size × SB interaction was observed for FCR (P < 0.01), where birds fed coarsely ground corn (CC) with 2% SB had lower FCR than those fed CC without SB. A particle size × SB interaction was observed for both expression of pepsinogen A and C (P < 0.01) which were negatively correlated with FCR on d 24. Addition of 2% SB upregulated pepsinogen A and C only in CC fed birds. Further, 2% SB also upregulated pancreatic amylase (AMY2A) and intestinal cationic amino acid transporter-1 (CAT1). Inclusion of dietary CC upregulated duodenal amino peptidase N (APN), jejunal alanine, serine, cysteine and threonine transporter-1 (ASCT1), and ileal peptide transporter-2 (PepT2). CONCLUSION: These results suggest that both SB and coarse particle size modulate expression of genes encoding important digestive enzymes and nutrient transporters and thus are directly related to bird performance. These findings provide insights into the combination effects of dietary fiber and particle size in the future management of broiler feeding.


Assuntos
Ração Animal/análise , Galinhas/genética , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Suplementos Nutricionais , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Transporte Biológico , Galinhas/crescimento & desenvolvimento , Sistema Digestório/enzimologia , Sistema Digestório/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA