Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Genet ; 105(2): 220-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950557

RESUMO

Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.


Assuntos
Axonema , Infertilidade Masculina , Masculino , Humanos , Axonema/genética , Mutação , Sêmen , Cauda do Espermatozoide , Infertilidade Masculina/genética , Espermatozoides , Flagelos , Proteínas Associadas aos Microtúbulos/genética , Dineínas/genética
2.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934199

RESUMO

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Sêmen , Flagelos , Fertilidade , Proteínas de Ligação ao Cálcio , Dineínas
3.
Reprod Biomed Online ; 47(5): 103328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742467

RESUMO

RESEARCH QUESTION: Do patients presenting with flagella ultrastructural defects as assessed by electron microscopy, and defined within three phenotypes (dysplasia of the fibrous sheath [DFS], primary flagellar dyskinesia [PFD] and non-specific flagellar abnormalities [NSFA]), have decreased chances of success in intracytoplasmic sperm injection (ICSI) or adverse obstetric and neonatal outcomes? DESIGN: Retrospective analysis of 189 ICSI cycles from 80 men with spermatozoa flagellum ultrastructural defects (DFS [n = 16]; PFD [n = 14]; NSFA [n = 50] compared with a control group (n = 97). Cycles were cumulatively analysed. All fresh and frozen embryo transfers resulting from each ICSI attempt were included. The effect of transmission electron microscopy (TEM) phenotype on the main ICSI outcomes was assessed by a multivariate logistic regression combined with a generalized linear mixed model to account for the non-independence of the observations. RESULTS: No predictive value of TEM phenotype was found on the main outcomes of ICSI, namely fertilization rates, pregnancy and delivery rates, and cumulative pregnancy and delivery rates. Cumulative pregnancy rates ranged from 29.0-43.3% in the different TEM phenotype subgroups compared with 36.8% in the control group. Cumulative live birth rates ranged from 24.6-36.7% compared with 31.4% in the control group. No increase was found in miscarriages, preterm births, low birth weights or birth abnormalities. CONCLUSIONS: Data on the cumulative chances of success in ICSI of patients with ultrastructural flagellar defects, a rare cause of male infertility often associated with an underlying genetic cause, are reassuring, as are obstetrical and neonatal outcomes in this population.


Assuntos
Astenozoospermia , Infertilidade Masculina , Gravidez , Recém-Nascido , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Estudos Retrospectivos , Sêmen , Infertilidade Masculina/terapia , Infertilidade Masculina/etiologia , Taxa de Gravidez , Microscopia Eletrônica de Transmissão , Fertilização in vitro
4.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444530

RESUMO

The use of multigene panel testing for patients with a predisposition to Hereditary Breast and Ovarian Cancer syndrome (HBOC) is increasing as the identification of mutations is useful for diagnosis and disease management. Here, we conducted a retrospective analysis of BRCA1/2 and non-BRCA gene sequencing in 4630 French HBOC suspected patients. Patients were investigated using a germline cancer panel including the 13 genes defined by The French Genetic and Cancer Group (GGC)-Unicancer. In the patients analyzed, 528 pathogenic and likely pathogenic variants (P/LP) were identified, including BRCA1 (n = 203, 38%), BRCA2 (n = 198, 37%), PALB2 (n = 46, 9%), RAD51C (n = 36, 7%), TP53 (n = 16, 3%), and RAD51D (n = 13, 2%). In addition, 35 novel (P/LP) variants, according to our knowledge, were identified, and double mutations in two distinct genes were found in five patients. Interestingly, retesting a subset of BRCA1/2-negative individuals with an expanded panel produced clinically relevant results in 5% of cases. Additionally, combining in silico (splicing impact prediction tools) and in vitro analyses (RT-PCR and Sanger sequencing) highlighted the deleterious impact of four candidate variants on splicing and translation. Our results present an overview of pathogenic variations of HBOC genes in the southeast of France, emphasizing the clinical relevance of cDNA analysis and the importance of retesting BRCA-negative individuals with an expanded panel.

5.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36796361

RESUMO

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Assuntos
Astenozoospermia , Tupaia , Animais , Masculino , Macaca fascicularis , Primatas , Sêmen , Motilidade dos Espermatozoides , Tupaiidae
6.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768883

RESUMO

Male infertility is a common and complex disease and presents as a wide range of heterogeneous phenotypes. Multiple morphological abnormalities of the sperm flagellum (MMAF) phenotype is a peculiar condition of extreme morphological sperm defects characterized by a mosaic of sperm flagellum defects to a total asthenozoospermia. At this time, about 40 genes were associated with the MMAF phenotype. However, mutation prevalence for most genes remains individually low and about half of individuals remain without diagnosis, encouraging us to pursue the effort to identify new mutations and genes. In the present study, an a cohort of 167 MMAF patients was analyzed using whole-exome sequencing, and we identified three unrelated patients with new pathogenic mutations in DNHD1, a new gene recently associated with MMAF. Immunofluorescence experiments showed that DNHD1 was totally absent from sperm cells from DNHD1 patients, supporting the deleterious effect of the identified mutations. Transmission electron microscopy reveals severe flagellum abnormalities of sperm cells from one mutated patient, which appeared completely disorganized with the absence of the central pair and midpiece defects with a shortened and misshapen mitochondrial sheath. Immunostaining of IFT20 was not altered in mutated patients, suggesting that IFT may be not affected by DNHD1 mutations. Our data confirmed the importance of DNHD1 for the function and structural integrity of the sperm flagellum. Overall, this study definitively consolidated its involvement in MMAF phenotype on a second independent cohort and enriched the mutational spectrum of the DNHD1 gene.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Humanos , Masculino , Anormalidades Múltiplas/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação , Sêmen , Cauda do Espermatozoide , Espermatozoides/patologia , Dineínas/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054852

RESUMO

PALB2 (partner and localizer of BRCA2), as indicated by its name, is a BRCA2-interacting protein that plays an important role in homologous recombination (HR) and DNA double-strand break (DSB) repair. While pathogenic variants of PALB2 have been well proven to confer an increased risk of breast cancer, data on its involvement in prostate cancer (PrC) have not been clearly demonstrated. We investigated, using targeted next generation sequencing (NGS), a 59-year-old Caucasian man who developed synchronous breast and prostate cancers. This genetic investigation allowed to identify an intragenic germline heterozygous duplication in PALB2, implicating intronic repetitive sequences spanning exon 11. This variant was confirmed by multiplex ligation probe amplification (MLPA), and genomic breakpoints have been identified and characterized at the nucleotide level (c.3114-811_3202-1756dup) using an approach based on walking PCR, long range PCR, and Sanger sequencing. RT-PCR using mRNA extracted from lymphocytes and followed by Sanger sequencing revealed a tandem duplication r.3114_3201dup; p.(Gly1068Glufs * 14). This duplication results in the synthesis of a truncated, and most-likely, non-functional protein. These findings expand the phenotypic spectrum of PALB2 variants and may improve the yield of genetic diagnoses in this field.


Assuntos
Neoplasias da Mama Masculina/genética , Éxons/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Duplicação Gênica , Predisposição Genética para Doença , Neoplasias Primárias Múltiplas/genética , Neoplasias da Próstata/genética , Processamento Alternativo/genética , Elementos Alu/genética , Sequência de Bases , DNA de Neoplasias/genética , Mutação da Fase de Leitura/genética , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Med Genet ; 59(7): 710-718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34348960

RESUMO

BACKGROUND: Oligoasthenoteratozoospermia is a typical feature of sperm malformations leading to male infertility. Only a few genes have been clearly identified as pathogenic genes of oligoasthenoteratozoospermia. METHODS AND RESULTS: Here, we identified a homozygous frameshift variant (c.731dup, p.Asn244Lysfs*3) in CCDC34, which is preferentially expressed in the human testis, using whole-exome sequencing in a cohort of 100 Chinese men with multiple morphological abnormalities of the sperm flagella (MMAF). In an additional cohort of 167 MMAF-affected men from North Africa, Iran and France, we identified a second subject harbouring a homozygous CCDC34 frameshift variant (c.799_817del, p.Glu267Lysfs*72). Both affected men presented a typical MMAF phenotype with an abnormally low sperm concentration (ie, oligoasthenoteratozoospermia). Transmission electron microscopy analysis of the sperm flagella affected by CCDC34 deficiency further revealed dramatic disorganisation of the axoneme. Immunofluorescence assays of the spermatozoa showed that CCDC34 deficiency resulted in almost absent staining of CCDC34 and intraflagellar transport-B complex-associated proteins (such as IFT20 and IFT52). Furthermore, we generated a mouse Ccdc34 frameshift mutant using CRISPR-Cas9 technology. Ccdc34-mutated (Ccdc34mut/mut ) male mice were sterile and presented oligoasthenoteratozoospermia with typical MMAF anomalies. Intracytoplasmic sperm injection has good pregnancy outcomes in both humans and mice. CONCLUSIONS: Our findings support that CCDC34 is crucial to the formation of sperm flagella and that biallelic deleterious mutations in CCDC34/Ccdc34 cause male infertility with oligoasthenoteratozoospermia in humans and mice.


Assuntos
Astenozoospermia , Infertilidade Masculina , Proteínas de Neoplasias , Oligospermia , Animais , Antígenos de Neoplasias , Astenozoospermia/genética , Astenozoospermia/patologia , Feminino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Mutação/genética , Proteínas de Neoplasias/genética , Oligospermia/genética , Oligospermia/patologia , Gravidez , Sêmen , Espermatozoides/patologia , Testículo/patologia
9.
Eur J Obstet Gynecol Reprod Biol ; 259: 100-104, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33639414

RESUMO

OBJECTIVE: Recurrent pregnancy loss (RPL) is a common infertility-related complication that affects approximately 1-3 % of women worldwide. Known causes of etiology are found in approximately half the cases but the other half remain unexplained. It is estimated that several thousands of genes contribute to reproductive success in mammals and the genetic causes of RPL cannot be fully addressed through targeted genetic tests. In recent years, massive parallel sequencing technologies has helped discovering many causal mutations in hereditary diseases such as RPL. STUDY DESIGN: Using whole-exome sequencing (WES), we studied a large multiplex consanguineous family with multiple cases of RPL and hydatidiform moles (HM). In addition, targeted Sanger sequencing was applied to 40 additional non-related individuals with RPL. RESULTS: The use of WES permitted to identify the pathogenic variant in KHDC3L (c.322_325delGACT) in related who experienced RPL with or without HM. Sanger sequencing confirmed the segregation of the mutation throughout the pedigree and permitted to establish this variant as the genetic cause responsible for RPL and HM in this family. CONCLUSION: KHDC3L is well established as a susceptibility gene for HM but we confirmed here that KHDC3L deleterious variants can also induce RPL. In addition, we observed a genotype-phenotype correlation, demonstrating that women with a truncating KHDC3L homozygous variant could not sustain a pregnancy and often had pregnancy losses mainly due to HM while those with the same heterozygous variant could have children but often endured RPL with no HM.


Assuntos
Aborto Habitual , Mola Hidatiforme , Aborto Habitual/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Feminino , Humanos , Mola Hidatiforme/genética , Mutação , Linhagem , Gravidez , Proteínas
10.
Cells ; 11(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011680

RESUMO

The genetic landscape of male infertility is highly complex. It is estimated that at least 4000 genes are involved in human spermatogenesis, but only few have so far been extensively studied. In this study, we investigated by whole exome sequencing two cases of idiopathic non-obstructive azoospermia (NOA) due to severe hypospermatogenesis. After variant filtering and prioritizing, we retained for each patient a homozygous loss-of-function (LoF) variant in a testis-specific gene, C1orf185 (c.250C>T; p.Gln84Ter) and CCT6B (c.615-2A>G), respectively. Both variants are rare according to the gnomAD database and absent from our local control cohort (n = 445). To verify the implication of these candidate genes in NOA, we used the CRISPR/Cas9 system to invalidate the mouse orthologs 4930522H14Rik and Cct6b and produced two knockout (KO) mouse lines. Sperm and testis parameters of homozygous KO adult male mice were analyzed and compared with those of wild-type animals. We showed that homozygous KO males were fertile and displayed normal sperm parameters and a functional spermatogenesis. Overall, these results demonstrate that not all genes highly and specifically expressed in the testes are essential for spermatogenesis, and in particular, we conclude that bi-allelic variants of C1orf185 and CCT6B are most likely not to be involved in NOA and male fertility.


Assuntos
Azoospermia/etiologia , Sistemas CRISPR-Cas/genética , Chaperonina com TCP-1/genética , Sequenciamento do Exoma/métodos , Testículo/metabolismo , Azoospermia/fisiopatologia , Humanos , Masculino
11.
Am J Hum Genet ; 103(3): 400-412, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122540

RESUMO

Multiple morphological abnormalities of the sperm flagellum (MMAF) is a severe form of male infertility defined by the presence of a mosaic of anomalies, including short, bent, curled, thick, or absent flagella, resulting from a severe disorganization of the axoneme and of the peri-axonemal structures. Mutations in DNAH1, CFAP43, and CFAP44, three genes encoding axoneme-related proteins, have been described to account for approximately 30% of the MMAF cases reported so far. Here, we searched for pathological copy-number variants in whole-exome sequencing data from a cohort of 78 MMAF-affected subjects to identify additional genes associated with MMAF. In 7 of 78 affected individuals, we identified a homozygous deletion that removes the two penultimate exons of WDR66 (also named CFAP251), a gene coding for an axonemal protein preferentially localized in the testis and described to localize to the calmodulin- and spoke-associated complex at the base of radial spoke 3. Sequence analysis of the breakpoint region revealed in all deleted subjects the presence of a single chimeric SVA (SINE-VNTR-Alu) at the breakpoint site, suggesting that the initial deletion event was potentially mediated by an SVA insertion-recombination mechanism. Study of Trypanosoma WDR66's ortholog (TbWDR66) highlighted high sequence and structural analogy with the human protein and confirmed axonemal localization of the protein. Reproduction of the human deletion in TbWDR66 impaired flagellar movement, thus confirming WDR66 as a gene associated with the MMAF phenotype and highlighting the importance of the WDR66 C-terminal region.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação ao Cálcio/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação/genética , Cauda do Espermatozoide/patologia , Espermatozoides/anormalidades , Axonema/genética , Estudos de Coortes , Dineínas/genética , Homozigoto , Humanos , Masculino , Testículo/patologia , Sequenciamento do Exoma/métodos
12.
Hum Reprod ; 31(12): 2872-2880, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798045

RESUMO

STUDY QUESTION: Can whole-exome sequencing (WES) of patients with multiple morphological abnormalities of the sperm flagella (MMAF) identify causal mutations in new genes or mutations in the previously identified dynein axonemal heavy chain 1 (DNAH1) gene? SUMMARY ANSWER: WES for six families with men affected by MMAF syndrome allowed the identification of DNAH1 mutations in four affected men distributed in two out of the six families but no new candidate genes were identified. WHAT IS KNOWN ALREADY: Mutations in DNAH1, an axonemal inner dynein arm heavy chain gene, have been shown to be responsible for male infertility due to a characteristic form of asthenozoospermia called MMAF, defined by the presence in the ejaculate of spermatozoa with a mosaic of flagellar abnormalities including absent, coiled, bent, angulated, irregular and short flagella. STUDY DESIGN, SIZE, DURATION: This was a retrospective genetics study of patients presenting a MMAF phenotype. Patients were recruited in Iran and Italy between 2008 and 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS: WES was performed for a total of 10 subjects. All identified variants were confirmed by Sanger sequencing. Two additional affected family members were analyzed by direct Sanger sequencing. To establish the prevalence of the DNAH1 mutation identified in an Iranian family, we carried out targeted sequencing on 38 additional MMAF patients of the same geographical origin. RT-PCR and immunochemistry were performed on sperm samples to assess the effect of the identified mutation on RNA and protein. MAIN RESULTS AND THE ROLE OF CHANCE: WES in six families identified a causal mutations in two families. Two additional affected family members were confirmed to hold the same homozygous mutation as their sibling. In total, DNAH1 mutations were identified in 5 out of 12 analyzed subjects (41.7%). If we only include index cases, we detected two mutated subjects out of six (33%) tested MMAF individuals. Furthermore we sequenced one DNAH1 exon found to be mutated (c.8626-1G > A) in an Iranian family in an additional 38 MMAF patients from Iran. One of these patients carried the variant confirming that this variant is relatively frequent in the Iranian population. The effect of the c.8626-1G > A variant was confirmed by RT-PCR and immunochemistry as no RNA or protein could be observed in sperm from the affected men. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: WES allows the amplification of 80-90% of all coding exons. It is possible that some DNAH1 exons may not have been sequenced and that we may have missed some additional mutations. Also, WES cannot identify deep intronic mutations and it is not efficient for detection of large genomic events (deletions, insertions, inversions). We did not identify any causal mutations in DNAH1 or in other candidate genes in four out of the six tested families. This indicates that the technique and/or the analysis of our data can be improved to increase the diagnosis efficiency. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirm that DNAH1 is one of the main genes involved in MMAF syndrome. It is a large gene with 78 exons making it challenging and expensive to sequence using the traditional Sanger sequencing methods. We show that WES sequencing is good alternative to Sanger sequencing to reach a genetic diagnosis in patients with severe male infertility phenotypes. STUDY FUNDING/COMPETING INTERESTS: This work was supported by following grants: the 'MAS-Flagella' project financed by the French ANR and the DGOS for the program PRTS 2014 and the 'Whole genome sequencing of patients with Flagellar Growth Defects (FGD)' project financed by the Fondation Maladies Rares for the program Séquençage à haut débit 2012. The authors have no conflict of interest.


Assuntos
Dineínas/genética , Infertilidade Masculina/genética , Mutação , Cauda do Espermatozoide , Espermatozoides/anormalidades , Forma Celular/genética , Exoma , Humanos , Masculino , Linhagem , Estudos Retrospectivos , Análise de Sequência de DNA , Espermatozoides/citologia , Sequenciamento do Exoma
13.
Hum Mol Genet ; 25(5): 878-91, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721930

RESUMO

In mammals, sperm-oocyte fusion initiates Ca(2+) oscillations leading to a series of events called oocyte activation, which is the first stage of embryo development. Ca(2+) signaling is elicited by the delivery of an oocyte-activating factor by the sperm. A sperm-specific phospholipase C (PLCZ1) has emerged as the likely candidate to induce oocyte activation. Recently, PAWP, a sperm-born tryptophan domain-binding protein coded by WBP2NL, was proposed to serve the same purpose. Here, we studied two infertile brothers exhibiting normal sperm morphology but complete fertilization failure after intracytoplasmic sperm injection. Whole exomic sequencing evidenced a missense homozygous mutation in PLCZ1, c.1465A>T; p.Ile489Phe, converting Ile 489 into Phe. We showed the mutation is deleterious, leading to the absence of the protein in sperm, mislocalization of the protein when injected in mouse GV and MII oocytes, highly abnormal Ca(2+) transients and early embryonic arrest. Altogether these alterations are consistent with our patients' sperm inability to induce oocyte activation and initiate embryo development. In contrast, no deleterious variants were identified in WBP2NL and PAWP presented normal expression and localization. Overall we demonstrate in humans, the absence of PLCZ1 alone is sufficient to prevent oocyte activation irrespective of the presence of PAWP. Additionally, it is the first mutation located in the C2 domain of PLCZ1, a domain involved in targeting proteins to cell membranes. This opens the door to structure-function studies to identify the conserved amino acids of the C2 domain that regulate the targeting of PLCZ1 and its selectivity for its lipid substrate(s).


Assuntos
Proteínas de Transporte/genética , Infertilidade Masculina/genética , Mutação , Fosfoinositídeo Fosfolipase C/genética , Proteínas de Plasma Seminal/genética , Interações Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Perda do Embrião , Feminino , Regulação da Expressão Gênica , Homozigoto , Humanos , Técnicas de Maturação in Vitro de Oócitos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/deficiência , Transporte Proteico , Proteínas de Plasma Seminal/metabolismo , Alinhamento de Sequência , Irmãos , Motilidade dos Espermatozoides , Espermatozoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA