Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 40: 103202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400167

RESUMO

Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Linhagem Celular Tumoral , Fígado
2.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34610738

RESUMO

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polímeros , Cápsulas , Campos Magnéticos , Engenharia Tecidual
3.
Biofabrication ; 12(4): 045022, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32050181

RESUMO

The feasibility of magnetic levitational bioassembly of tissue-engineered constructs from living tissue spheroids in the presence of paramagnetic ions (i.e. Gd3+) was recently demonstrated. However, Gd3+ is relatively toxic at concentrations above 50 mM normally used to enable magnetic levitation with NdFeB-permanent magnets. Using a high magnetic field (a 50 mm-bore, 31 T Bitter magnet) at the High Field Magnet Laboratory at Radboud University in Nijmegen, The Netherlands, we performed magnetic levitational assembly of tissue constructs from living spheroids prepared from the SW1353 chondrosarcoma cell line at 0.8 mM Gd3+ containing salt gadobutrol at 19 T magnetic field. The parameters of the levitation process were determined on the basis of polystyrene beads with a 170 µm-diameter. To predict the theoretical possibility of assembly, a zone of stable levitation in the horizontal and vertical areas of cross sections was previously calculated. The construct from tissue spheroids partially fused after 3 h in levitation. The analysis of viability after prolonged exposure (1 h) to strong magnetic fields (up to 30 T) showed the absence of significant cytotoxicity or morphology changes in the tissue spheroids. A high magnetic field works as a temporal and removal support or so-called 'scaffield'. Thus, formative biofabrication of tissue-engineered constructs from tissue spheroids in the high magnetic field is a promising research direction.


Assuntos
Campos Magnéticos , Linhagem Celular , Humanos , Tecnologia , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA