Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2056, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136137

RESUMO

Drosophila melanogaster tumor models are growing in popularity, driven by the high degree of genetic as well as functional conservation to humans. The most common method to measure the effects of a tumor on distant organs of a human cancer patient is to use computed tomography (CT), often used in diagnosing cachexia, a debilitating cancer-induced syndrome most visibly characterized by loss of muscle mass. Successful application of high resolution micro-CT scanning of D. melanogaster was recently reported and we here present the segmentation of all visible larval organs at several stages of tumor development. We previously showed the strong expected reduction in muscle mass as the tumor develops, and we here report a surprisingly strong reduction also in gut and Malpighian tubules (kidney) volume. Time-point of tumor development was found to have a stronger correlation to cachectic organ volume loss than tumor volume, giving support to the previously proposed idea that tumor size does not directly determine degree of cachexia.


Assuntos
Caquexia/patologia , Drosophila melanogaster/genética , Trato Gastrointestinal/patologia , Túbulos de Malpighi/patologia , Neoplasias/patologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Larva/crescimento & desenvolvimento , Tamanho do Órgão/fisiologia , Microtomografia por Raio-X
2.
EMBO J ; 40(18): e107336, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34309071

RESUMO

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Assuntos
Autofagia , Metabolismo Energético , Neoplasias/etiologia , Neoplasias/metabolismo , Nutrientes/metabolismo , Animais , Autofagia/genética , Caquexia/diagnóstico por imagem , Caquexia/etiologia , Caquexia/patologia , Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Neoplasias/complicações
3.
Adv Exp Med Biol ; 1167: 113-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520352

RESUMO

The resurgence of Drosophila as a recognized model for carcinogenesis has contributed greatly to our conceptual advance and mechanistic understanding of tumor growth in vivo. With its powerful genetics, Drosophila has emerged as a prime model organism to study cell biology and physiological functions of autophagy. This has enabled exploration of the contributions of autophagy in several tumor models. Here we review the literature of autophagy related to tumorigenesis in Drosophila. Functional analysis of core autophagy components does not provide proof for a classical tumor suppression role for autophagy alone. Autophagy both serve to suppress or support tumor growth. These effects are context-specific, depending on cell type and oncogenic or tumor suppressive lesion. Future delineation of how autophagy impinges on tumorigenesis will demand to untangle in detail, the regulation and flux of autophagy in the respective tumor models. The downstream tumor-regulative roles of autophagy through organelle homeostasis, metabolism, selective autophagy or alternative mechanisms remain largely unexplored.


Assuntos
Autofagia , Carcinogênese , Drosophila , Animais , Modelos Animais de Doenças
5.
Nature ; 541(7637): 417-420, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077876

RESUMO

As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.


Assuntos
Autofagia , Drosophila melanogaster/citologia , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Aminoácidos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transporte Biológico , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Interleucina-6/metabolismo , Proteínas de Membrana , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
6.
Mol Biol Cell ; 25(21): 3330-41, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25165138

RESUMO

Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages--two extremes of the polarization spectrum--to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn(2+)-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively.


Assuntos
Macrófagos/fisiologia , Fagossomos/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Lisossomos/metabolismo , Macrófagos/citologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA