Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509415

RESUMO

The incidence of aortic valve stenosis (AoS) increases with age, and once diagnosed, symptomatic severe AoS has a yearly mortality rate of 25%. AoS is diagnosed with transthoracic echocardiography (TTE), however, this gold standard is time consuming and operator and acoustic window dependent. As AoS affects the arterial blood pressure waveform, AoS-specific waveform features might serve as a diagnostic tool. Aim of the present study was to develop a novel, non-invasive, AoS detection model based on blood pressures waveforms. This cross-sectional study included patients with AoS undergoing elective transcatheter or surgical aortic valve replacement. AoS was determined using TTE, and patients with no or mild AoS were labelled as patients without AoS, while patients with moderate or severe AoS were labelled as patients with AoS. Non-invasive blood pressure measurements were performed in awake patients. Ten minutes of consecutive data was collected. Several blood pressure-based features were derived, and the median, interquartile range, variance, and the 1st and 9th decile of the change of these features were calculated. The primary outcome was the development of a machine-learning model for AoS detection, investigating multiple classifiers and training on the area under the receiver-operating curve (AUROC). In total, 101 patients with AoS and 48 patients without AoS were included. Patients with AoS showed an increase in left ventricular ejection time (0.02 s, p = 0.001), a delayed maximum upstroke in the systolic phase (0.015 s, p < 0.001), and a delayed maximal systolic pressure (0.03 s, p < 0.001) compared to patients without AoS. With the logistic regression model, a sensitivity of 0.81, specificity of 0.67, and AUROC of 0.79 were found. The majority of the population without AoS was male (85%), whereas in the population with AoS this was evenly distributed (54% males). Age was significantly (5 years, p < 0.001) higher in the population with AoS. In the present study, we developed a novel model able to distinguish no to mild AoS from moderate to severe AoS, based on blood pressure features with high accuracy. Clinical registration number: The study entailing patients with TAVR treatment was registered at ClinicalTrials.gov (NCT03088787, https://clinicaltrials.gov/ct2/show/NCT03088787 ). The study with elective cardiac surgery patients was registered with the Netherland Trial Register (NL7810, https://trialsearch.who.int/Trial2.aspx?TrialID=NL7810 ).

2.
Eur J Anaesthesiol ; 40(6): 407-417, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655712

RESUMO

BACKGROUND: Classically, cerebral autoregulation (CA) entails cerebral blood flow (CBF) remaining constant by cerebrovascular tone adapting to fluctuations in mean arterial pressure (MAP) between ∼60 and ∼150 mmHg. However, this is not an on-off mechanism; previous work has suggested that vasomotor tone is proportionally related to CA function. During propofol-based anaesthesia, there is cerebrovascular vasoconstriction, and static CA remains intact. Sevoflurane-based anaesthesia induces cerebral vasodilation and attenuates CA dose-dependently. It is unclear how this translates to dynamic CA across a range of blood pressures in the autoregulatory range. OBJECTIVE: The aim of this study was to quantify the effect of step-wise increases in MAP between 60 and 100 mmHg, using phenylephrine, on dynamic CA during propofol- and sevoflurane-based anaesthesia. DESIGN: A nonrandomised interventional trial. SETTING: Single centre enrolment started on 11 January 2019 and ended on 23 September 2019. PATIENTS: We studied American Society of Anesthesiologists (ASA) I/II patients undergoing noncardiothoracic, nonneurosurgical and nonlaparoscopic surgery under general anaesthesia. INTERVENTION: In this study, cerebrovascular tone was manipulated in the autoregulatory range by increasing MAP step-wise using phenylephrine in patients receiving either propofol- or sevoflurane-based anaesthesia. MAP and mean middle cerebral artery blood velocity (MCA Vmean ) were measured in ASA I and II patients, anaesthetised with either propofol ( n  = 26) or sevoflurane ( n  = 28), during 10 mmHg step-wise increments of MAP between 60 and 100 mmHg. Static CA was determined by plotting 2-min averaged MCA Vmean versus MAP. Dynamic CA was determined using transfer function analysis and expressed as the phase lead (°) between MAP and MCA Vmean oscillations, created with positive pressure ventilation with a frequency of 6 min -1 . MAIN OUTCOMES: The primary outcome of this study was the response of dynamic CA during step-wise increases in MAP during propofol- and sevoflurane-based anaesthesia. RESULTS: MAP levels achieved per step-wise increments were comparable between anaesthesia regiment (63 ±â€Š3, 72 ±â€Š2, 80 ±â€Š2, 90 ±â€Š2, 100 ±â€Š3 mmHg, and 61 ±â€Š4, 71 ±â€Š2, 80 ±â€Š2, 89 ±â€Š2, 98 ±â€Š4 mmHg for propofol and sevoflurane, respectively). MCA Vmean increased more during step-wise MAP increments for sevoflurane compared to propofol ( P ≤0.001). Dynamic CA improved during propofol (0.73° mmHg -1 , 95% CI 0.51 to 0.95; P  ≤ 0.001)) and less pronounced during sevoflurane-based anaesthesia (0.21°â€ŠmmHg -1 (95% CI 0.01 to 0.42, P  = 0.04). CONCLUSIONS: During general anaesthesia, dynamic CA is dependent on MAP, also within the autoregulatory range. This phenomenon was more pronounced during propofol anaesthesia than during sevoflurane. TRIAL REGISTRATION: NCT03816072 ( https://clinicaltrials.gov/ct2/show/NCT03816072 ).


Assuntos
Éteres Metílicos , Propofol , Humanos , Sevoflurano , Pressão Sanguínea , Propofol/farmacologia , Anestesia Geral , Homeostase/fisiologia , Fenilefrina/farmacologia
3.
J Clin Anesth ; 83: 110976, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174389

RESUMO

STUDY OBJECTIVE: A new algorithm was developed that transforms the non-invasive finger blood pressure (BP) into a radial artery BP (B̂PRad), whereas the original algorithm estimated brachial BP (B̂PBra). In this study we determined whether this new algorithm shows better agreement with invasive radial BP than the original one and whether in the operating room this algorithm can be used safely. DESIGN, SETTING AND PATIENTS: This observational study was conducted on thirty-three non-cardiac surgery patients. INTERVENTION AND MEASUREMENTS: Invasive radial and non-invasive finger BP were measured, of the latter B̂PRad and B̂PBra were transformed. Agreement of systolic, mean, and diastolic arterial BP (SAP, MAP, and DAP, respectively) was assessed traditionally with Bland-Altman and trend analysis and clinically safety was quantified with error grid analyses. A bias (precision) of 5 (8) mmHg or less was considered adequate. MAIN RESULTS: Thirty-three patients were included with an average of 676 (314) 20 s segments. For both comparisons, bias (precision) of MAP was within specified criteria, whereas for SAP, precision was higher than 8 mmHg. B̂PRad showed a better agreement than B̂PBra with BPRad for DAP values (bias (precision): 0.7 (6.0) and - 6.4 (4.3) mmHg, respectively). B̂PRad and B̂PBra both showed good concordance in following changes in BPRad (for all parameters overall degree was <7°). There were slightly more measurement pairs of MAP within the no-risk zone for B̂PRad than for B̂PBra (96 vs 77%, respectively). CONCLUSIONS: In this cohort of non-cardiac surgery patients, we found good agreement between BPRad and B̂PRad. Compared to B̂PBra, B̂PRad shows better agreement although clinical implications are small. This trial was registered with ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT03795831).


Assuntos
Determinação da Pressão Arterial , Artéria Radial , Humanos , Pressão Sanguínea/fisiologia , Pressão Arterial/fisiologia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA