Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401926, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015026

RESUMO

The aim is to determine the effect of polymer density, correlated to the comonomer content, and nanosilica addition on the mechanical and Environmental Stress Cracking Resistance (ESCR) characteristics of high-density polyethylene (HDPE). In this regard, five HDPE samples with similar Melt Flow Index (MFI) and molar mass but various densities were acquired from a petrochemical plant. Two polymerization reactors work in series and differ only in the amount of 1-buene comonomer fed to the second reactor. To ascertain the microstructure of the studied samples, GPC and SSA (successive self-nucleation and annealing) analyses were accomplished. All samples resulted having similar characteristics but slightly various SCB/1000C=7.26-9.74 (SCB=Short Chain Branching). Consequently, meanwhile studied HDPEs reveal similar notched impact and stress at yield values, the tensile modulus, stress-at-break, and elongation-at-break tend to demonstrate different results with the SCB content. More significantly, ESCR characteristic varied considerably with SCB/1000C extent, so that higher amount of SCB acknowledged advanced ESCR. Notably, blending HDPE sample containing higher amount of SCB/1000C, with 3 wt.% of chemically modified nanosilica enhanced ESCR characteristic by 40%. DFT (Density Functional Theory) calculations unveiled the role of the comonomer, quantitatively by binding energies and qualitatively by Non Covalent Interaction (NCI) plots.

2.
ChemistryOpen ; 13(4): e202300176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230849

RESUMO

This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
Sci Rep ; 13(1): 22771, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123653

RESUMO

In recent years, concerns about the presence of pharmaceutical compounds in wastewater have increased. Various types of residues of tetracycline family antibiotic compounds, which are widely used, are found in environmental waters in relatively low and persistent concentrations, adversely affecting human health and the environment. In this study, a resorcinol formaldehyde (RF) aerogel was prepared using the sol-gel method at resorcinol/catalyst ratio of 400 and resorcinol/water ratio of 2 and drying at ambient pressure for removing antibiotics like minocycline. Next, RF aerogel was modified with graphene and to increase the specific surface area and porosity of the modified sample and to form the graphene plates without compromising the interconnected porous three-dimensional structure of the aerogel. Also, the pores were designed according to the size of the minocycline particles on the meso- and macro-scale, which bestowed the modified sample the ability to remove a significant amount of the minocycline antibiotic from the aqueous solution. The removal percentage of the antibiotic obtained by UV-vis spectroscopy. Ultimately, the performance of prepared aerogels was investigated under various conditions, including adsorbent doses (4-10 mg), solution pHs (2-12), contact times of the adsorbent with the adsorbate (3-24 h), and initial concentration of antibiotic (40-100 mg/l). The results from the BET test demonstrated that the surface area of the resorcinol formaldehyde aerogel sample, which included 1 wt% graphene (RF-G1), exhibited an augmentation in comparison to the surface area of the pure aerogel. Additionally, it was noted that the removal percentage of minocycline antibiotic for both the unmodified and altered samples was 71.6% and 92.1% at the optimal pH values of 4 and 6, respectively. The adsorption capacity of pure and modified aerogel for the minocycline antibiotic was 358 and 460.5 mg/g, respectively. The adsorption data for the modified aerogel was studied by the pseudo-second-order model and the results obtained from the samples for antibiotic adsorption with this model revealed a favorable fit, which indicated that the chemical adsorption in the rapid adsorption of the antibiotic by the modified aerogel had occurred.


Assuntos
Antibacterianos , Grafite , Minociclina , Antibacterianos/isolamento & purificação , Formaldeído , Grafite/química , Minociclina/isolamento & purificação , Resorcinóis , Água/química
4.
ChemistryOpen ; 12(6): e202200250, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37260410

RESUMO

This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 µg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 µg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.


Assuntos
Antineoplásicos , Nanopartículas , Humanos , Difração de Raios X , Células MCF-7 , Fenômenos Magnéticos
5.
Talanta ; 258: 124399, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870153

RESUMO

According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Nanotubos de Carbono , Neoplasias , Grafite/química , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico
6.
J Biomed Mater Res B Appl Biomater ; 110(5): 1093-1102, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877767

RESUMO

The main purpose of neural tissue engineering and regenerative medicine is the development of biological substitutions to preserve, improve, and regenerate the damaged functions of tissues and organs. Three novel conduits, including polyurethane (PU), polyurethane/collagen (PU/C), and polyurethane/collagen/nano-bio glass (PU/C/NBG), were fabricated by the electrospinning technique. After confirming the suitability of conduits in the in-vitro environment, conduits were surgically sutured in a 10-mm gap in the sciatic nerve of a rat to evaluate their role in sciatic nerve reconstruction. After 4, 8, and 12 weeks of surgery, nerve regeneration was assessed by the hot plate test, sciatic functional index, electromyography, histology, and immunohistochemistry against S100, NF200, and CD31 antibodies. The results of various examinations revealed that the PU/C/NBG conduit is significantly more suitable than PU and PU/C conduits in terms of nerve regeneration. However, all three groups of conduits had the potential to be used for nerve regeneration. Overall, this study discovered that the PU/C/NBG conduit is a biocompatible neural conduit, which is a favorable candidate for peripheral nerve regeneration and axonal growth.


Assuntos
Poliuretanos , Nervo Isquiático , Animais , Colágeno , Regeneração Nervosa/fisiologia , Ratos , Nervo Isquiático/fisiologia , Engenharia Tecidual
7.
Environ Sci Pollut Res Int ; 28(39): 55419-55432, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34137007

RESUMO

By industrialization, management of water resources is known as one of the most challenging issues for human society due to the presence of various contaminants such as oil, azo dyes, and micropollutants in water. The treatment of wastewaters containing more than one type of pollutants via a single-step process cannot be performed by a simple adsorption process. In this study, by combining the advantages of superparamagnetic iron oxide, carboxymethyl-ß-cyclodextrin polymer, and N-heterocyclic palladium complex, a versatile bi-functionalized iron oxide nanoadsorbent [Fe3O4@CM-ß-CDP@Tet-Pd] was fabricated for the capture of toxic dyes in wastewater. The structure of nanoadsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometer analysis. Afterward, the catalytic activity of the synthesized nanoadsorbent was examined in the aqueous solution of sodium borohydride as the reducing agent for rhodamine B, methylene blue, 4-nitrophenol, Metanil yellow, and Eosin Y. The UV-vis spectroscopy was used to monitor the catalytic activity of the [Fe3O4@CM-ß-CDP@Tet-Pd] in an aqueous medium. The nanoadsorbent was successfully recovered and re-used six times, without remarkable loss in its catalytic activity. These results showed that the combination of iron oxide nanoparticles with carboxymethyl-ß-cyclodextrin polymer provides a promising well-performed and easily recyclable nanoadsorbent for dye uptake and wastewater treatment.


Assuntos
Purificação da Água , beta-Ciclodextrinas , Compostos Férricos , Humanos , Ferro , Paládio
8.
Int J Biol Macromol ; 182: 82-90, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766598

RESUMO

The potential of berberine loaded in chitosan nanoparticles (BerNChs) within a hybrid of alginate (Alg) and chitosan (Ch) hydrogel was investigated for the substrate which is known as an inhibit activator proteins. The physicochemical properties of the developed Alg-Ch hydrogel were investigated by fourier-transform infrared spectroscopy. The swelling ability and degradation rate of hydrogels were also analyzed in a phosphate-buffered saline solution at physiological pH. The seeded scaffolds with endometrial stem cells as well as scaffolds alone were then transplanted into hemisected SCI rats. The SEM images displayed the favorable seeding and survival of the cells on the Alg-Ch/BerNChs hydrogel scaffold. The obtained data from immunostining of neuroflilament (NF), as a neuronal growth marker, in the various groups showed that the lowest and highest immunoractivity was belonged to the control and Alg-Ch/BerNCh seeded with ESCs groups, respectively. Finally, the Basso, Beattie, and Bresnahan (BBB) test confirmed the recovery of sensory and motor functions, clinically. The results suggested that combination therapy using the endometrial stem cells seeded on Alg-Ch/BerNChs hydrogel scaffold has the potential to regenerate the injured spinal cord and to limit the secondary damage.


Assuntos
Alginatos/química , Berberina/administração & dosagem , Quitosana/análogos & derivados , Hidrogéis/química , Nanopartículas/química , Regeneração da Medula Espinal , Animais , Berberina/farmacologia , Células Cultivadas , Liberação Controlada de Fármacos , Endométrio/citologia , Feminino , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos
9.
ACS Appl Bio Mater ; 4(5): 4049-4070, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006822

RESUMO

Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.


Assuntos
Materiais Biocompatíveis/química , Tinta , Impressão Tridimensional , Medicina Regenerativa , Células-Tronco/química , Matriz Extracelular/química , Humanos , Teste de Materiais , Tamanho da Partícula , Peptídeos/química , Polímeros/química , Alicerces Teciduais/química
10.
Polymers (Basel) ; 9(3)2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30970758

RESUMO

A novel binary homogeneous catalyst system based on (I): rac-Me2Si(2-Me-4-PhIn)2ZrCl2 and (II): (2-PhIn)2ZrCl2 catalysts at various molar ratios was utilized for the synthesis of polypropylene (PP) reactor blends with bimodal molecular weight distribution (MWD). The results of gel permeation chromatography analyses revealed that the catalyst (I) was responsible for the production of i-PP with high molecular weight (MW) while the individual use of catalyst (II) led to the production of an elastomeric PP with relatively low MW. However, application of the binary catalyst system led to high MW bimodal MWD products being highly dependent on the catalysts' molar ratios. Increasing the molar ratio of catalyst (II) to catalyst (I) resulted in a notable enhancement of the products' complex viscosity due to the increased MW, a higher level of chains' entanglements and formation of amorphous blocks along the polymer chains. All products exhibited a single relaxation that shifted towards longer times upon changing the catalysts' molar ratios. Scanning electron microscopy results revealed that the fracture surface of the blends, synthesized by the binary catalyst system, became more heterogeneous in comparison with the products obtained by the individual use of the catalyst (I). The observed heterogeneity was found to increase by increasing the amount of catalyst (II). Such morphological change was further corroborated by the dynamic rheological data, indicating a promising correlation between the linear rheological results and the morphological features of the synthesized PP reactor blends.

11.
Mater Sci Eng C Mater Biol Appl ; 63: 609-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040256

RESUMO

Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors.


Assuntos
Materiais Biocompatíveis/química , Nanocompostos/química , Polímeros/química , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Polipropilenos/química , Propriedades de Superfície , Temperatura , Molhabilidade
12.
Colloids Surf B Biointerfaces ; 127: 233-40, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25687094

RESUMO

The main aim of the current study was to investigate the effects of different topographical features on the biological performance of polypropylene (PP)/silica coatings. To this end, a novel method including combined use of nanoparticles and non-solvent was used for preparation of superhydrophobic PP coatings. The proposed method led to a much more homogeneous appearance with a better adhesion to the glass substrate. Moreover, a notable reduction was observed in the required contents of nanoparticles (100-20 wt% with respect to the polymer) and non-solvent (35.5-9 vol%) for achieving superhydrophobicity. Surface composition and morphology of the coatings were also investigated via X-ray photoelectron spectroscopy and scanning electron microscopy. Based on both qualitative and quantitative evaluations, it was found that the superhydrophobic coatings with only nano-scale roughness strongly prevented adhesion and proliferation of 4T1 mouse mammary tumor cells as compared to the superhydrophobic surfaces with micro-scale structure. Such results demonstrate that the cell behavior could be controlled onto the polymer and nanocomposite-based surfaces via tuning the surface micro/nano structure.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Polipropilenos/farmacologia , Dióxido de Silício/química , Animais , Butanonas , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Espectroscopia Fotoeletrônica , Solventes , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA