Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 346: 123648, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408504

RESUMO

Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 µmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.


Assuntos
Compostos de Amônio , Chlorella vulgaris , Microalgas , Águas Residuárias , Esgotos , Fotoperíodo , Nitrogênio , Hidrogênio , Biomassa
2.
Environ Res ; 243: 117840, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081342

RESUMO

Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.


Assuntos
Nanopartículas , Petróleo , Emulsões/química , Emulsificantes , Recursos Naturais
3.
Mol Biotechnol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938536

RESUMO

Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.

4.
Chemosphere ; 338: 139526, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459926

RESUMO

The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.


Assuntos
Microalgas , Fermentação , Hidrogênio/análise , Combustíveis Fósseis , Biocombustíveis , Biomassa
5.
Nanoscale ; 15(40): 16241-16267, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37439261

RESUMO

Access to safe drinking water and a hygienic living environment are the basic necessities that encourage healthy living. However, the presence of various pollutants (especially toxic heavy metal ions) at high concentrations in water renders water unfit for drinking and domestic use. The presence of high concentrations of heavy-metal ions (e.g., Pb2+, Hg2+, Cr6+, Cd2+, or Cu2+) greater than their permissible limits adversely affects human health, and increases the risk of cancer of the kidneys, liver, skin, and central nervous system. Therefore, their detection in water is crucial. Due to the various benefits of "green"-synthesized carbon-dots (C-dots) over other materials, these materials are potential candidates for sensing of toxic heavy-metal ions in water sources. C-dots are very small carbon-based nanomaterials that show chemical stability, magnificent biocompatibility, excitation wavelength-dependent photoluminescence (PL), water solubility, simple preparation strategies, photoinduced electron transfer, and the opportunity for functionalization. A new family of C-dots called "carbon quantum dots" (CQDs) are fluorescent zero-dimensional carbon nanoparticles of size < 10 nm. The green synthesis of C-dots has numerous advantages over conventional chemical routes, such as utilization of inexpensive and non-poisonous materials, straightforward operations, rapid reactions, and renewable precursors. Natural sources, such as biomass and biomass wastes, are broadly accepted as green precursors for fabricating C-dots because these sources are economical, ecological, and readily/extensively accessible. Two main methods are available for C-dots production: top-down and bottom-up. Herein, this review article discusses the recent advancements in the green fabrication of C-dots: photostability; surface structure and functionalization; potential applications for the sensing of hazardous anions and toxic heavy-metal ions; binding of toxic ions with C-dots; probable mechanistic routes of PL-based sensing of toxic heavy-metal ions. The green production of C-dots and their promising applications in the sensing of hazardous ions discussed herein provides deep insights into the safety of human health and the environment. Nonetheless, this review article provides a resource for the conversion of low-value biomass and biomass waste into valuable materials (i.e., C-dots) for promising sensing applications.


Assuntos
Metais Pesados , Pontos Quânticos , Humanos , Carbono/química , Biomassa , Água , Íons , Pontos Quânticos/química
6.
Sci Total Environ ; 874: 162437, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36858210

RESUMO

The use of fossil fuels, emission of greenhouse gases (GHG) into the atmosphere, and waste pose a problem to the environment and public health that urgently needs to be dealt with. Among numerous chemical activating agents that can be added to anaerobic digestion (AD) to enhance nutrient removal and increase the quality and quantity of biomethane, iron chloride (FeCl3) is the one that has the lowest cost and is the most environmentally friendly. This state-of-the-art review aims to revise the influence of FeCl3 on the Brunauer-Emmett-Teller (BET) surface area of biochar and its ability to increase methane (CH4) yield and remove contaminants from biogas and wastewater. The novelty of the study is that FeCl3, an activating agent, can increase the BET surface area of biochar, and its efficacy increases when combined with zinc chloride or phosphoric acid. Regarding the removal of contaminants from wastewater and biogas, FeCl3 has proven to be an effective coagulant, reducing the chemical oxygen demand (COD) of wastewater and hydrogen sulfide in biogas. The performance of FeCl3 depends on the dosage, pH, and feedstock used. Therefore, FeCl3 can increase the BET surface area of biochar and CH4 yield and remove contaminants from wastewater and biogas. More research is needed to investigate the ability of FeCl3 to remove water vapor and carbon dioxide during biogas production while accounting for a set of other parameters, including FeCl3 size.


Assuntos
Cloretos , Águas Residuárias , Biocombustíveis , Esgotos , Eliminação de Resíduos Líquidos , Ferro , Metano , Reatores Biológicos , Anaerobiose
7.
Chemosphere ; 325: 138236, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36868419

RESUMO

The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.


Assuntos
Restaurantes , Águas Residuárias , Gorduras , Macrolídeos/análise , Hidrocarbonetos/análise , Esgotos
8.
Environ Res ; 227: 115716, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940816

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Biodegradação Ambiental , Ecossistema , Água , Poluentes Ambientais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/análise
9.
Chemosphere ; 318: 137926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682636

RESUMO

Through developing a highly efficient solid-phase microwave-assisted (SPMA) synthesis technique, we were able to synthesize graphene quantum dots (GQDs) that were doped with nitrogen and boron atoms. The as-synthesized GQDs were employed as sensing probes for detecting pesticides and iron ions within aqueous solutions. The SPMA approach is very versatile for in-situ doping of multiple atoms within the graphitic structure of GQDs. The maximal B/C and N/C atomic ratios within the GQD structures were reached as high as 28.6 and 86.4 at.%, respectively. For the B-/N-codoped GQDs, the N dopants comprises of pyrrolic/pyridinic N and graphitic N, whereas the B doping mainly involves two bonding types (i.e., B4C and BCO2) inserted into or decorated on the GQD skeleton structure. Based on the analysis of the Stern-Volmer plots, the B-/N-codoped GQDs can be employed as probing nanomaterials toward Fe2+ and paraquat detection thanks to their incredible sensitivity throughout the photoluminescent quenching. The PL quenching mechanism of GQDs is usually governed by the GQD‒(paraquat)x intermediates formation and the resulting π-π stacking that can easily quench and aggregate. The findings of this work pave the pathway to engineering the chemical compositions as well as the crystalline structures of GQDs, used for energy and other sensing devices.


Assuntos
Grafite , Praguicidas , Pontos Quânticos , Grafite/química , Boro , Pontos Quânticos/química , Nitrogênio/química , Micro-Ondas , Paraquat , Íons
10.
Environ Res ; 220: 115168, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584838

RESUMO

The inherent toxicity, mutagenicity and carcinogenicity of dyes that are discharged into aquatic ecosystems, harming the health of humans and animals. ZIF-8 based composites are regarded as good adsorbents for the breakdown of dyes in order to remove or degrade them. In the course of this research, metal-organic framework materials known as ZIF-8 and its two stable composites, ZIF-8/BiCoO3 (MZBC) and ZIF-8/BiYO3 (MZBY), were produced via a hydrothermal process and solvothermal process, respectively, for the dangerous Congo red (CR) dye removal from the solution in water using adsorption method. According to the findings, the most significant amount of CR dye that could be adsorbed is onto MZBC, followed by MZBY and ZIF-8. The pseudo-second-order kinetic model was used effectively to match the data for adsorption behavior and was confirmed using the Langmuir isotherm equation. There is a possibility that the pH and amount of adsorbent might influence the adsorption behavior of the adsorbents. According to the experiment results, the technique featured an endothermic adsorption reaction that spontaneously occurred. The higher adsorption capability of MZBC is because of the large surface area. This results in strong interactions between the functional groups on the surface of MZBC and CR dye molecules. In addition to the electrostatic connection between functional group Zn-O-H on the surface of ZIF-8 in MZBC and the -NH2 or SO3 functional group areas in CR molecules, it also includes the strong π-π interaction of biphenyl rings.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Corantes , Purificação da Água/métodos , Adsorção , Cinética , Concentração de Íons de Hidrogênio
11.
Chemosphere ; 310: 136790, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220430

RESUMO

Membrane distillation (MD) is a thermally driven technology applied in desalination and water reuse with utilisation of sustainable energy. However, algal organic matter (AOM) could foul membrane critically and plague MD's long-term operational stability. In this study, the soluble extracellular polymeric substance (sEPS) and intracellular organic matter with bound extracellular polymeric substance (IOM + bEPS) of two algal species (Amphora coffeaeformis and Navicula incerta) were exposed to 60 °C, 70 °C and 80 °C for 8 h with polypropylene hydrophobic membrane, simulating heated AOMs contacted with membrane inside MD unit, to study the temperature effect on membrane fouling. The dissolved carbohydrate and protein in the sEPS and IOM + bEPS samples generally increased after being heated. Heating caused cell lysis and the release and dissolution of carbohydrate and protein from sEPS, IOM and bEPS into water. As heating temperature increased, the carbohydrate release from the AOM usually increased. The contact angle of membrane contacted with sEPS and IOM + bEPS reduced significantly after heat treatment. The reduction in IOM + bEPS was larger than sEPS, in line with SEM analysis, indicating membrane surfaces and pores with IOM + bEPS fouled more severely than sEPS. It is due to higher hydrophobicity in IOM + bEPS causing adherence to membrane and presence of amphiphiles. High protein, lipid, and saturated fats proportions also cause severe fouling. SEM-EDX analysis indicated presence of O, Na, Cl and Mg elements, pointing to carbohydrate and lipids, and salt trapped in foulants. AOM heating and composition had direct effect to the membrane integrity, dictating severity of fouling in MD operations.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Purificação da Água , Temperatura , Destilação , Membranas Artificiais , Íons , Carboidratos , Água
12.
Environ Pollut ; 315: 120319, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183872

RESUMO

Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.


Assuntos
Neoplasias Testiculares , Poluentes Químicos da Água , Animais , Masculino , Humanos , Plásticos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Tecnologia
13.
Chemosphere ; 307(Pt 4): 136004, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35970213

RESUMO

The extensive usage of synthetic fungicides against fungal diseases has caused adverse impacts on both human and agricultural crops. Therefore, the current study aims to establish a new bacterium 7WMA2, as a biocontrol agent to achieve better antifungal results. The strain 7WMA2 was isolated from marine sediment, displayed a broad spectrum of several fungi that includes Alternaria alternata, Cladosporium sp., Candida albicans, Fusarium oxysporum, Trichosporon pullulans, and Trichophyton rubrum. The 16S rRNA phylogeny inferred that strain 7WMA2 was a member of Brevibacillus. The phylogenetic and biochemical analyses revealed that the strain 7WMA2 belongs to the species of Brevibacillus halotolerans. The complete genome sequence of Brevibacillus halotolerans 7WMA2 consists of a circular chromosome of 5,351,077 bp length with a GC content of 41.39 mol %, including 4433 CDS, 111 tRNA genes, and 36 rRNA genes. The genomic analysis showed 23 putative biosynthetic secondary metabolite gene clusters responsible for non-ribosomal peptides, polyketides and siderophores. The antifungal compounds concentrated from cell-free fermentation broth demonstrated strong inhibition of fungi, and the compounds are considerably thermal stable and adaptable to pH range 2-12. This complete genome sequence has provided insight for further exploration of antagonistic ability and its secondary metabolite compounds indicated feasibility as biological control agents against fungal infections.


Assuntos
Brevibacillus , Fungicidas Industriais , Policetídeos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Brevibacillus/genética , Brevibacillus/metabolismo , Fungicidas Industriais/metabolismo , Humanos , Peptídeos/metabolismo , Filogenia , Policetídeos/metabolismo , Policetídeos/farmacologia , RNA Ribossômico 16S/genética , Sideróforos/metabolismo
14.
Food Chem Toxicol ; 167: 113277, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803363

RESUMO

In recent days, the existence of several food colorants has an impact on human health issue that may induce major carcinogenic effects. Therefore, the removal of food colorants must be made in accordance with the necessity of health awareness in life. Photocatalyst treatment using semiconductors shows a promising way to solve these issues. In this relation, this paper presents the novel nanoflower shaped NiO/CuO (0.9:0.1 M and 0.5:0.5 M) photocatalysts developed via co-precipitation method for the destruction of methyl orange (MO) as a model food colorant under visible light irradiation. The X-ray diffraction result proposed that the composite catalysts consist of mixed heterostructures (cubic and monoclinic) with no other impurities. From the images of transmission electron microscope, the catalyst presents nano spherical and cubical mixed morphologies. Besides, NiO/CuO (0.5:0.5 M) catalyst exhibits agglomeration due to the highly contented CuO. The Energy Dispersive X-ray spectra gave the elemental configuration without other impurity traces. The Brunauer-Emmett-Teller surface area of NiO/CuO (0.9:0.1 M) catalyst occupies higher surface area. Unfortunately, NiO/CuO (0.5:0.5 M) sample has lower surface area due to the agglomerated particles. The UV-vis spectra confirmed that the absorption of the catalyst lies in higher wavelength region occupying small band gap. Moreover, the visible light activity of the catalysts showed 75.3% (0.9:0.1 M) and 40.2% (0.5:0.5 M) degrading efficiencies. At the end, the highly efficient catalyst was experienced photocatalytic activity upto 5 repeated runs and the efficiency remained the same. Therefore, the catalyst NiO/CuO (0.9:0.1 M) has prompted the successful degradation of MO food colorant under visible light.


Assuntos
Corantes de Alimentos , Nanoestruturas , Catálise , Cobre/química , Humanos
15.
Chemosphere ; 303(Pt 1): 134749, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35490754

RESUMO

Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. This study was carried out in two industrial areas including Okhla and Mohan cooperative in New Delhi, India. The six groundwater samples were obtained for water quality assessment for 2015 and 2018. The heavy metals investigated in water samples were Cu, As, Pb, Mn, Ni, Zn, Fe, Cr, and Mn. The water quality was assessed in the heavy metals index (MI) and heavy metal pollution index (HPI). From indexing approach, it was observed that pollution levels have increased in year 2018 as compared to the year 2015. MI < 1 for Cu in 2015 and 2018 in both industrial areas. In the case of remaining metals, MI ranged from 2.5 to 8.4. When the HPI indexing approach was adopted, water was unfit for drinking in both industrial areas in 2015 and 2018, with an HPI value > 100. Non-carcinogenic risk assessment (HI) ranged from 1.7 to 1.9 in 2015, increasing from 17.41 to 217 in 2018, indicating high risk in both years. Carcinogenic risk (CR) was within the acceptable range for 48% of each heavy metal analysed sample. When the Carcinogenic risk index was considered (CRI), all samples were beyond the acceptable range, and every person was prone to carcinogenic risk in 2015.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Carcinógenos/análise , Monitoramento Ambiental , Água Subterrânea/análise , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
16.
Chemosphere ; 291(Pt 2): 132780, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767846

RESUMO

The present work investigates the proficiency of green silver oxide nanocatalyst synthesised from Monotheca buxifolia (Falc.) Dcne. leaves extract, and their application for biodiesel synthesis from novel Prunus bokhariensis seed oil (non-edible). The seed oil content of 55% and FFA content of 0.80 mg KOH/g were reported. Several analytical tools (EDX, FT-IR, SEM and XRD) were used to characterise the Ag2O nanocatalyst. Maximum (89%) FAME yield of the PBSOB (Prunus bokhariensis seed oil biodiesel) was achieved at ambient transesterification conditions i.e. 3.5 wt% nanocatalyst loading, 2.5 h reaction time, 130 °C of reaction temperature and 12:1 alcohol to oil ratio. The synthesised PBSOB was additionally characterised by analytical methods like, GC-MS and FT-IR. The different aspects of fuel were identified i.e. flash point (84 °C), kinematic viscosity (4.01 cSt @ 40 °C), sulphur content (0.0003 wt %), density (0.853 kg/L) and acid number (0.167 mg KOH/g). All the above properties were verified and agreed well with biodiesel international standards (European Union (14214), China GB/T (20828) and ASTM (6751, 951). In general, Prunus bokhariensis seed oil and Ag2O nanocatalyst seem to be remarkably active, cheap and stable candidates for the biodiesel industry in future.


Assuntos
Biocombustíveis , Prunus , Biocombustíveis/análise , Catálise , Esterificação , Óxidos , Óleos de Plantas , Compostos de Prata , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Food Chem Toxicol ; 158: 112607, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653554

RESUMO

Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.


Assuntos
Produtos Biológicos , Suplementos Nutricionais , Composição de Medicamentos , Alimento Funcional , Microalgas/química , Nanopartículas , Biocombustíveis , Biomassa , Humanos
18.
Bioprocess Biosyst Eng ; 44(9): 1807-1818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34009462

RESUMO

Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.


Assuntos
Óleo de Coco/química , Cocos/química , Frutas/química , Ácidos Láuricos/química , Ácidos Láuricos/isolamento & purificação
19.
Front Bioeng Biotechnol ; 8: 546067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553111

RESUMO

The ever-expanding human population puts tremendous pressure on global food security. With climate change threats lowering crop productivity and food nutritional quality, it is important to search for alternative and sustainable food sources. Microalgae are a promising carbon-neutral biomass with fast growth rate and do not compete with terrestrial crops for land use. More so, microalgae synthesize exclusive marine carotenoids shown to not only exert antioxidant activities but also anti-cancer properties. Unfortunately, the conventional method for fucoxanthin extraction is mainly based on solvent extraction, which is cheap but less environmentally friendly. With the emergence of greener extraction techniques, the extraction of fucoxanthin could adopt these strategies aligned to UN Sustainable Development Goals (SDGs). This is a timely review with a focus on existing fucoxanthin extraction processes, complemented with future outlook on the potential and limitations in alternative fucoxanthin extraction technologies. This review will serve as an important guide to the sustainable and environmentally friendly extraction of fucoxanthin and other carotenoids including but not limited to astaxanthin, lutein or zeaxanthin. This is aligned to the SDGs wherein it is envisaged that this review becomes an antecedent to further research work in extract standardization with the goal of meeting quality control and quality assurance benchmarks for future commercialization purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA