Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11400, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762571

RESUMO

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Assuntos
Anticonvulsivantes , Sistemas de Liberação de Medicamentos , Gelatina , Fenitoína , Dióxido de Silício , Gelatina/química , Anticonvulsivantes/química , Anticonvulsivantes/administração & dosagem , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Fenitoína/química , Fenitoína/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Compostos Férricos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Tamanho da Partícula
2.
Sci Rep ; 14(1): 5389, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443417

RESUMO

Polymer microcapsules containing cyanoacrylates have represented a promising option to develop self-healing biomaterials. This study aims to develop an electrospray method for the preparation of capsules using poly(methyl methacrylate) (PMMA) as the encapsulant and ethyl 2-cyanoacrylate (EC) as the encapsulate. It also aims to study the effect of the electrospray process parameters on the size and morphology of the capsules. The capsules were characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Moreover, the effects of electrospray process parameters on the size were investigated by Taguchi experimental design. FTIR and TGA approved the presence of both PMMA and EC without further reaction. FE-SEM micrograph demonstrated that an appropriate choice of solvents, utilizing an appropriate PMMA:EC ratio and sufficient PMMA concentration are critical factors to produce capsules dominantly with an intact and spherical morphology. Utilizing various flow rates (0.3-0.5 ml/h) and applied voltage (18-26 kV), capsules were obtained with a 600-1000 nm size range. At constantly applied voltages, the increase in flow rate increased the capsule size up to 40% (ANOVA, p ≤ 0.05), while at constant flow rates, the increase in applied voltage reduced the average capsule size by 3.4-26% (ANOVA, p ≤ 0.05). The results from the Taguchi design represented the significance of solution flow rate, applied voltage, and solution concentration. It was shown that the most effective parameter on the size of capsules is flow rate. This research demonstrated that electrospray can be utilized as a convenient method for the preparation of sub-micron PMMA capsules containing EC. Furthermore, the morphology of the capsules is dominated by solvents, PMMA concentration, and PMMA:EC ratio, while the average size of the capsules can be altered by adjusting the flow rate and applied voltage of the electrospray process.

3.
Polymer (Guildf) ; 52(18): 3887-3896, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21927508

RESUMO

Viability of encapsulated cells in situ crosslinkable macromonomers depends strongly on the minimum concentration of polymerization initiators and monomers required for gelation. Novel 4-arm poly(ethylene oxide-co-lactide-glycolide acrylate) (SPELGA) macromonomers were synthesized and characterized with respect to gelation, sol fraction, degradation, and swelling in aqueous solution. SPELGA macromonomers were crosslinked in the absence of N-vinyl-2-pyrrolidone (NVP) monomer to produce a hydrogel network with a shear modulus of 27±4 kPa. The shear modulus of the gels increased by 170-fold as the macromonomer concentration was increased from 10 to 25 wt%. Sol fraction ranged between 8-18%. Addition of only 0.4 mol% NVP to the polymerization mixture increased modulus by 2.2-fold from 27±4 (no NVP) to 60±10 kPa. The higher modulus was attributed to the dilution effect of polymer chains in the sol, by delaying the onset of diffusion-controlled reaction, and cross-propagation of the growing chains with network-bound SPELGA acrylates. Degradation of SPELGA gels depended on water content and density of hydrolytically degradable ester groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA