Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110466, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39156645

RESUMO

Solvatochromic compounds have emerged as valuable environment-sensitive probes for biological research. Here we used thiol-reactive solvatochromic analogs of the green fluorescent protein (GFP) chromophore to track conformational changes in two proteins, recoverin and the A2A adenosine receptor (A2AAR). Two dyes showed Ca2+-induced fluorescence changes when attached to recoverin. Our best-performing dye, DyeC, exhibited agonist-induced changes in both intensity and shape of its fluorescence spectrum when attached to A2AAR; none of these effects were observed with other common environment-sensitive dyes. Molecular dynamics simulations showed that activation of the A2AAR led to a more confined and hydrophilic environment for DyeC. Additionally, an allosteric modulator of A2AAR induced distinct fluorescence changes in the DyeC spectrum, indicating a unique receptor conformation. Our study demonstrated that GFP-inspired dyes are effective for detecting structural changes in G protein-coupled receptors (GPCRs), offering advantages such as intensity-based and ratiometric tracking, redshifted fluorescence spectra, and sensitivity to allosteric modulation.

2.
J Mol Biol ; 435(23): 168310, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806553

RESUMO

G protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins in the human genome, and represent one of the most important classes of drug targets. Their structural studies facilitate rational drug discovery. However, atomic structures of only about 20% of human GPCRs have been solved to date. Recombinant production of GPCRs for structural studies at a large scale is challenging due to their low expression levels and stability. Therefore, in this study, we explored the efficacy of the eukaryotic system LEXSY (Leishmania tarentolae) for GPCR production. We selected the human A2A adenosine receptor (A2AAR), as a model protein, expressed it in LEXSY, purified it, and compared with the same receptor produced in insect cells, which is the most popular expression system for structural studies of GPCRs. The A2AAR purified from both expression systems showed similar purity, stability, ligand-induced conformational changes and structural dynamics, with a remarkably higher protein yield in the case of LEXSY expression. Overall, our results suggest that LEXSY is a promising platform for large-scale production of GPCRs for structural studies.


Assuntos
Receptor A2A de Adenosina , Receptores Acoplados a Proteínas G , Proteínas Recombinantes , Humanos , Descoberta de Drogas , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Leishmania , Receptor A2A de Adenosina/biossíntese , Receptor A2A de Adenosina/química , Conformação Proteica , Ligantes , Estabilidade Proteica
3.
J Biol Chem ; 299(10): 105247, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703990

RESUMO

Dihydroxy acid leukotriene (LTB4) and cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are inflammatory mediators derived from arachidonic acid via the 5-lipoxygenase pathway. While structurally similar, these two types of leukotrienes (LTs) exert their functions through interactions with two distinct G protein-coupled receptor (GPCR) families, BLT and CysLT receptors, which share low sequence similarity and belong to phylogenetically divergent GPCR groups. Selective antagonism of LT receptors has been proposed as a promising strategy for the treatment of many inflammation-related diseases including asthma and chronic obstructive pulmonary disease, rheumatoid arthritis, cystic fibrosis, diabetes, and several types of cancer. Selective CysLT1R antagonists are currently used as antiasthmatic drugs, however, there are no approved drugs targeting CysLT2 and BLT receptors. In this review, we highlight recently published structures of BLT1R and CysLTRs revealing unique structural features of the two receptor families. X-ray and cryo-EM data shed light on their overall conformations, differences in functional motifs involved in receptor activation, and details of the ligand-binding pockets. An unexpected binding mode of the selective antagonist BIIL260 in the BLT1R structure makes it the first example of a compound targeting the sodium-binding site of GPCRs and suggests a novel strategy for the receptor activity modulation. Taken together, these recent structural data reveal dramatic differences in the molecular architecture of the two LT receptor families and pave the way to new therapeutic strategies of selective targeting individual receptors with novel tool compounds obtained by the structure-based drug design approach.

4.
Commun Biol ; 6(1): 362, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012383

RESUMO

The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptor A2A de Adenosina , Humanos , Receptor A2A de Adenosina/metabolismo , Conformação Molecular , Membrana Celular/metabolismo , Proteínas/metabolismo
5.
Nat Commun ; 13(1): 4736, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961984

RESUMO

The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.


Assuntos
Receptores de Lisoesfingolipídeo , Esfingosina , Humanos , Sistema Imunitário , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia
6.
Biomolecules ; 11(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419032

RESUMO

Oncomodulin (Ocm), or parvalbumin ß, is an 11-12 kDa Ca2+-binding protein found inside and outside of vertebrate cells, which regulates numerous processes via poorly understood mechanisms. Ocm consists of two active Ca2+-specific domains of the EF-hand type ("helix-loop-helix" motif), covered by an EF-hand domain with inactive EF-hand loop, which contains a highly conservative cysteine with unknown function. In this study, we have explored peculiarities of the microenvironment of the conservative Cys18 of recombinant rat Ocm (rWT Ocm), redox properties of this residue, and structural/functional sensitivity of rWT Ocm to the homologous C18S substitution. We have found that pKa of the Cys18 thiol lays beyond the physiological pH range. The measurement of redox dependence of rWT Ocm thiol-disulfide equilibrium (glutathione redox pair) showed that redox potential of Cys18 for the metal-free and Ca2+-loaded protein is of -168 mV and -176 mV, respectively. Therefore, the conservative thiol of rWT Ocm is prone to disulfide dimerization under physiological redox conditions. The C18S substitution drastically reduces α-helices content of the metal-free and Mg2+-bound Ocm, increases solvent accessibility of its hydrophobic residues, eliminates the cooperative thermal transition in the apo-protein, suppresses Ca2+/Mg2+ affinity of the EF site, and accelerates Ca2+ dissociation from Ocm. The distinct structural and functional consequences of the minor structural modification of Cys18 indicate its possible redox sensory function. Since some other EF-hand proteins also contain a conservative redox-sensitive cysteine located in an inactive EF-hand loop, it is reasonable to suggest that in the course of evolution, some of the EF-hands attained redox sensitivity at the expense of the loss of their Ca2+ affinity.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Sequência Conservada , Cisteína/metabolismo , Animais , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Magnésio/metabolismo , Oxirredução , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Compostos de Sulfidrila/metabolismo , Temperatura
7.
Sci Data ; 7(1): 388, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184270

RESUMO

Structural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.


Assuntos
Cisteína/química , Leucotrienos/química , Receptores Acoplados a Proteínas G/química , Síncrotrons , Difração de Raios X , Cristalização , Humanos
9.
J Biomol Struct Dyn ; 35(1): 78-91, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26726132

RESUMO

Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 µM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.


Assuntos
Proteínas de Transporte/química , Sequência Conservada , Motivos EF Hand , Interleucina-11/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Interleucina-11/metabolismo , Metais/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA