Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0294827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917138

RESUMO

Neutrophil proteinase 3 (PR3) is an important drug target for inflammatory lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Drug discovery efforts targeting PR3 require active enzyme for in vitro characterization, such as inhibitor screening, enzymatic assays, and structural studies. Recombinant expression of active PR3 overcomes the need for enzyme supplies from human blood and in addition allows studies on the influence of mutations on enzyme activity and ligand binding. Here, we report the expression of recombinant PR3 (rPR3) using a baculovirus expression system. The purification and activation process described resulted in highly pure and active PR3. The activity of rPR3 in the presence of commercially available inhibitors was compared with human PR3 by using a fluorescence-based enzymatic assay. Purified rPR3 had comparable activity to the native human enzyme, thus being a suitable alternative for enzymatic studies in vitro. Further, we established a surface plasmon resonance-based assay to determine binding affinities and kinetics of PR3 ligands. These methods provide valuable tools for early drug discovery aiming towards treatment of lung inflammation.


Assuntos
Mieloblastina , Proteínas Recombinantes , Humanos , Mieloblastina/metabolismo , Mieloblastina/genética , Ligantes , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Animais , Células Sf9 , Ressonância de Plasmônio de Superfície , Ligação Proteica , Baculoviridae/genética , Cinética , Expressão Gênica , Spodoptera
2.
J Chem Inf Model ; 64(3): 621-626, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38276895

RESUMO

Using a combination of multisite λ-dynamics (MSλD) together with in vitro IC50 assays, we evaluated the polypharmacological potential of a scaffold currently in clinical trials for inhibition of human neutrophil elastase (HNE), targeting cardiopulmonary disease, for efficacious inhibition of Proteinase 3 (PR3), a related neutrophil serine proteinase. The affinities we observe suggest that the dihydropyrimidinone scaffold can serve as a suitable starting point for the establishment of polypharmacologically targeting both enzymes and enhancing the potential for treatments addressing diseases like chronic obstructive pulmonary disease.


Assuntos
Polifarmacologia , Humanos , Mieloblastina , Proteínas Secretadas Inibidoras de Proteinases
3.
Biomolecules ; 13(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37627277

RESUMO

Cancer cells often adapt to targeted therapies, yet the molecular mechanisms underlying adaptive resistance remain only partially understood. Here, we explore a mechanism of RAS/RAF/MEK/ERK (MAPK) pathway reactivation through the upregulation of RAF isoform (RAFs) abundance. Using computational modeling and in vitro experiments, we show that the upregulation of RAFs changes the concentration range of paradoxical pathway activation upon treatment with conformation-specific RAF inhibitors. Additionally, our data indicate that the signaling output upon loss or downregulation of one RAF isoform can be compensated by overexpression of other RAF isoforms. We furthermore demonstrate that, while single RAF inhibitors cannot efficiently inhibit ERK reactivation caused by RAF overexpression, a combination of two structurally distinct RAF inhibitors synergizes to robustly suppress pathway reactivation.


Assuntos
Regulação para Cima , Simulação por Computador , Regulação para Baixo , Conformação Molecular , Resistência a Medicamentos
4.
Cell Syst ; 7(2): 161-179.e14, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30007540

RESUMO

Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Multimerização Proteica/efeitos dos fármacos , Termodinâmica , Quinases raf/química , Quinases raf/metabolismo , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA