Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 746470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630114

RESUMO

Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.

2.
PLoS One ; 7(10): e46151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118851

RESUMO

BACKGROUND: Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats. METHODS AND RESULTS: Rats underwent 2 h of middle cerebral artery occlusion (MCAo). DHA, neuroprotectin D1 (NPD1) or vehicle (saline) was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle. CONCLUSIONS: We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.


Assuntos
Isquemia Encefálica , Ácidos Docosa-Hexaenoicos/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acidente Vascular Cerebral , Animais , Comportamento/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Infarto da Artéria Cerebral Média , Masculino , Fosforilação , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
3.
J Pharmacol Exp Ther ; 313(3): 1090-100, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15716383

RESUMO

Stilbazulenyl nitrone (STAZN) is a potent lipophilic second-generation azulenyl nitrone antioxidant, which is highly neuroprotective in rodent models of cerebral ischemia and trauma. This study was conducted to establish whether the neuroprotection induced by STAZN persists with chronic survival and to characterize STAZN's pharmacokinetics. Physiologically regulated rats received a 2-h middle cerebral artery occlusion by intraluminal suture and were treated with either STAZN [four 0.6 mg/kg doses i.p. administered at 2 (i.e., onset of recirculation), 4, 24, and 48 h; n = 16] or dimethyl sulfoxide vehicle (n = 11). They received sequential neurobehavioral examinations followed by quantitative neuropathology at 30 days. STAZN improved neurological deficits compared with vehicle controls, beginning within <2 h of the first dose and persisting throughout a 30-day survival. Large cystic necrotic infarcts were common in vehicle-treated rats but infrequent in STAZN-treated rats, and noninfarcted forebrain tissue was increased on average by 15%. In normal rats administered 5 mg/kg STAZN i.v. in Solutol HS 15/ethanol/saline vehicle, STAZN blood levels exhibited a biexponential decline, with an initial half-life of 28 min and a subsequent slow decay with half-life of approximately 7 h. STAZN tissue levels at 2 to 3 h were, on average, 2.5% of blood levels in forebrain, 56% in myocardium, and 41% in kidney. STAZN was concentrated in liver with initial concentrations averaging 5.2-fold above blood levels and a subsequent linear decline of 40% between 24 and 72 h. These results establish that STAZN confers enduring ischemic neuroprotection, has a long circulating half-life, and penetrates well into brain and other organs-characteristics favoring its potential therapeutic utility.


Assuntos
Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Óxidos de Nitrogênio/farmacologia , Animais , Isquemia Encefálica/patologia , Masculino , Óxidos de Nitrogênio/farmacocinética , Ratos , Ratos Sprague-Dawley , Sesquiterpenos
4.
Stroke ; 34(3): 758-63, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12624304

RESUMO

BACKGROUND AND PURPOSE: SolCD39 is a soluble form of recombinant human ecto-ATP/ADPase (NTPDase1) and represents a new class of antithrombotic agents. SolCD39 blocks and reverses platelet activation, preventing recruitment of additional platelets into a growing thrombus. The purpose of this study was to examine the effect of solCD39 on neurological deficit, infarct size, and extent of edema after transient middle cerebral artery occlusion (MCAO) in rats. METHODS: Physiologically controlled Sprague-Dawley rats underwent 2-hour MCAO by retrograde insertion of an intraluminal suture coated with poly-l-lysine. The agent (solCD39) was administered intravenously before MCAO or at 1-hour or 3-hour recirculation. Other groups received vehicle (Tris-buffered saline) or human albumin (as a "positive" neuroprotective control; 25%, 0.5% of body weight) at 1-hour recirculation. Neurological status was evaluated during occlusion (at 60 minutes) and daily for 3 days after MCAO. Brains were perfusion-fixed at 72 hours, and infarct volumes and brain swelling were determined. RESULTS: Pretreatment with solCD39 significantly improved the neurological score at 72 hours compared with the vehicle group (4.4+/-0.6 versus 7.6+/-0.6, respectively; P=0.008). Cortical infarct areas were significantly reduced at multiple levels by pretreatment with solCD39. Total striatal infarct area was also significantly reduced compared with vehicle by both solCD39 pretreatment (48% mean reduction) and solCD39 treatment at 3-hour recirculation (51% mean reduction). Treatment with SolCD39 significantly reduced total infarct volume (corrected for brain swelling) by an average of 71% to 72% when administered either before ischemia or at 3 hours of recirculation compared with vehicle. Treatment with albumin significantly reduced neurological score and total, cortical, and subcortical infarction at multiple levels, as expected. CONCLUSIONS: Treatment with SolCD39, administered either before or at 3 hours after MCAO, improves neurological score and reduces infarct size compared with vehicle. A pharmacological agent of this type appears to have potential for the treatment of focal ischemic stroke.


Assuntos
Adenosina Trifosfatases/farmacologia , Antígenos CD/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Animais , Apirase , Comportamento Animal/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Infarto Cerebral/prevenção & controle , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Ataque Isquêmico Transitório/etiologia , Masculino , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Albumina Sérica/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA