Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiat Oncol ; 19(1): 34, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475815

RESUMO

BACKGROUND: FLASH therapy is a treatment technique in which radiation is delivered at ultra-high dose rates (≥ 40 Gy/s). The first-in-human FAST-01 clinical trial demonstrated the clinical feasibility of proton FLASH in the treatment of extremity bone metastases. The objectives of this investigation are to assess the toxicities of treatment and pain relief in study participants with painful thoracic bone metastases treated with FLASH radiotherapy, as well as workflow metrics in a clinical setting. METHODS: This single-arm clinical trial is being conducted under an FDA investigational device exemption (IDE) approved for 10 patients with 1-3 painful bone metastases in the thorax, excluding bone metastases in the spine. Treatment will be 8 Gy in a single fraction administered at ≥ 40 Gy/s on a FLASH-enabled proton therapy system delivering a single transmission proton beam. Primary study endpoints are efficacy (pain relief) and safety. Patient questionnaires evaluating pain flare at the treatment site will be completed for 10 consecutive days post-RT. Pain response and adverse events (AEs) will be evaluated on the day of treatment and on day 7, day 15, months 1, 2, 3, 6, 9, and 12, and every 6 months thereafter. The outcomes for clinical workflow feasibility are the occurrence of any device issues as well as time on the treatment table. DISCUSSION: This prospective clinical trial will provide clinical data for evaluating the efficacy and safety of proton FLASH for palliation of bony metastases in the thorax. Positive findings will support the further exploration of FLASH radiation for other clinical indications including patient populations treated with curative intent. REGISTRATION: ClinicalTrials.gov NCT05524064.


Assuntos
Neoplasias Ósseas , Prótons , Humanos , Neoplasias Ósseas/radioterapia , Dor , Estudos Prospectivos , Tórax
2.
Clin Oncol (R Coll Radiol) ; 33(11): 713-722, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551871

RESUMO

FLASH radiotherapy (FLASH-RT) delivers radiation treatment at an ultra-high dose rate that is several orders of magnitude higher than current clinical practice. In multiple preclinical studies, FLASH-RT has shown consistent normal tissue sparing effects while preserving equivalent antitumour activity in comparison with conventional dose rate radiation treatment. This is known as the 'FLASH effect'. Given the recent research interest in combining hypofractionated radiotherapy with immunotherapy to try to improve clinical outcomes, there is an intriguing clinical question as to whether FLASH irradiation may be a rational partner to combine with immune modulating drugs? To better predict the synergistic effect of both modalities, here we review the biological mechanisms of how FLASH differentially impacts the immune landscape, including circulating immune cells, tumour microenvironment and the inflammatory response. In order to make recommendations for future research, we summarise all published studies that investigated the immune modulatory effects of FLASH-RT and further explore the scientific reasons for combining FLASH with immunotherapy for potential clinical applications.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Protocolos Clínicos , Humanos , Imunoterapia , Neoplasias/radioterapia , Radioterapia , Dosagem Radioterapêutica
3.
Curr Cancer Drug Targets ; 12(3): 260-78, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22268387

RESUMO

Brain tumors, primary and metastatic, are a cause of significant mortality and morbidity. Radiotherapy (RT) forms an integral part of the treatment of brain tumors. Intrinsic relative tumor radio-resistance, normal tissue tolerance and impact on neurocognitive function, all limit the efficacy of RT. Radiosensitizers can potentially increase efficacy on tumors while maintaining normal tissue toxicity, with or without inherent cytotoxicity. This article reviews the evolution of evidence with use of non-cytotoxic radiosensitizers in brain radiotherapy and their status at the end of the first decade of this millennium. Considering, the era of development and mechanism of action, these agents are classified as first, second and third-generation non-cytotoxic radiosensitizers. The last millennium involved elaboration of first-generation compounds including halogenated pyrimidines, hypoxic cell sensitizers (e.g. imidazoles) and glycolytic inhibitors (e.g. lonidamine). The first decade of this millennium has highlighted redox modulators like motexafin gadolinium and newer hypoxic cell sensitizers like efaproxiral, which have shown promise. However, phase III trials and meta-analyses have not identified a clear winner though the second-generation has shown some rays of hope. Recent research has focused on expanding the horizon by studying modulation of newer molecular pathways like DNA repair, microtubule stabilization, cytokine function and nuclear factor-kappa beta (NF-KB) in order to increase RT efficacy. The review concludes by summarizing the class of evidence and the level of recommendation available for use of non-cytotoxic radiosensitizers in brain RT.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Citotoxinas , Radiossensibilizantes/administração & dosagem , Animais , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos como Assunto/tendências , Citotoxinas/administração & dosagem , Citotoxinas/efeitos adversos , Humanos , Radiossensibilizantes/efeitos adversos
4.
Technol Cancer Res Treat ; 7(6): 441-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19044323

RESUMO

To improve local control for inoperable non-small cell lung cancer (NSCLC), a phase I dose escalation study for locally advanced and medically inoperable patients was devised to escalate tumor dose while limiting the dose to organs at risk including the esophagus, spinal cord, and residual lung. Helical tomotherapy provided image-guided IMRT, delivered in a 5-week hypofractionated schedule to minimize the effect of accelerated repopulation. Forty-six patients judged not to be surgical candidates with Stage I-IV NSCLC were treated. Concurrent chemotherapy was not allowed. Radiotherapy was delivered via helical tomotherapy and limited to the primary site and clinically proven or suspicious nodal regions without elective nodal irradiation. Patients were placed in 1 of 5 dose bins, all treated for 25 fractions, with dose per fraction ranging from 2.28 to 3.22 Gy. The bin doses of 57 to 80.5 Gy result in 2 Gy/fraction normalized tissue dose (NTD) equivalents of 60 to 100 Gy. In each bin, the starting dose was determined by the relative normalized tissue mean dose modeled to cause < 20% Grade 2 pneumonitis. Dose constraints included spinal cord maximum NTD of 50 Gy, esophageal maximum NTD < 64 Gy to < or = 0.5 cc volume, and esophageal effective volume of 30%. No grade 3 RTOG acute pneumonitis (NCI-CTC v.3) or esophageal toxicities (CTCAE v.3.0 and RTOG) were observed at median follow-up of 8.1 months. Pneumonitis rates were 70% grade 1 and 13% grade 2. Multivariate analysis identified lung NTD(mean) (p=0.012) and administration of adjuvant chemotherapy following radiotherapy (p=0.015) to be independent risk factors for grade 2 pneumonitis. Only seven patients (15%) required narcotic analgesics (RTOG grade 2 toxicity) for esophagitis, with only 2.3% average weight loss during treatment. Best in-field gross response rates were 17% complete response, 43% partial response, 26% stable disease, and 6.5% in-field thoracic progression. The out-of-field thoracic failure rate was 13%, and distal failure rate was 28%. The median survival was 18 months with 2-year overall survival of 46.8% +/- 9.7% for this cohort, 50% of whom were stage IIIB and 30% stage IIIA. Dose escalation can be safely achieved in NSCLC with lower than expected rates of pneumonitis and esophagitis using hypofractionated image-guided IMRT. The maximum tolerated dose has yet to be reached.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fracionamento da Dose de Radiação , Neoplasias Pulmonares/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA