Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 13(4): 399-413, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366885

RESUMO

Intravenous administration of conditioned medium from stem cells of human exfoliated deciduous teeth (SHED-CM) regenerates mechanically injured osteochondral tissues in mouse temporomandibular joint osteoarthritis (TMJOA). However, the underlying therapeutic mechanisms remain unclear. Here, we showed that SHED-CM alleviated injured TMJ by inducing anti-inflammatory M2 macrophages in the synovium. Depletion of M2 by Mannosylated Clodrosome abolished the osteochondral repair activities of SHED-CM. Administration of CM from M2-induced by SHED-CM (M2-CM) effectively ameliorated mouse TMJOA by inhibiting chondrocyte inflammation and matrix degradation while enhancing chondrocyte proliferation and matrix formation. Notably, in vitro, M2-CM directly suppressed the catabolic activities while enhancing the anabolic activities of interleukin-1ß-stimulated mouse primary chondrocytes. M2-CM also inhibited receptor activator of nuclear factor NF-κB ligand-induced osteoclastogenesis in RAW264.7 cells. Secretome analysis of M2-CM and M0-CM revealed that 5 proteins related to anti-inflammation and/or osteochondrogenesis were enriched in M2-CM. Of these proteins, the Wnt signal antagonist, secreted frizzled-related protein 1 (sFRP1), was the most abundant and played an essential role in the shift to anabolic chondrocytes, suggesting that M2 ameliorated TMJOA partly through sFRP1. This study suggests that secretome from SHED exerted remarkable osteochondral regeneration activities in TMJOA through the induction of sFRP1-expressing tissue-repair M2 macrophages.


Assuntos
Osteoartrite , Células-Tronco , Humanos , Camundongos , Animais , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células-Tronco/metabolismo , Macrófagos/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Anti-Inflamatórios/metabolismo , Dente Decíduo
2.
Oral Dis ; 28(4): 1157-1169, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33759275

RESUMO

OBJECTIVES: To investigate the role of hypoxia-inducible factor 1α (HIF-1α) signaling, the expression profile of M1 and M2 macrophages, and the role of the sphingosine 1-phosphate (S1P)/S1P receptor system in palatal wound healing of heterozygous HIF-1α-deficient (HIF-1α HET) mice. MATERIALS AND METHODS: HIF-1α HET and wild-type (WT) littermates underwent palatal tissue excision at the mid-hard palate. Histological analysis, immunostaining, real-time PCR, Western blotting (WB), and cellular migration assays were performed to analyze wound closure and macrophage infiltration. RESULTS: DMOG pretreatment showed an acceleration of palatal wound closure in WT mice. In contrast, the delayed palatal wound closure was observed in HIF-1α HET mice with diminished production of Col1a1, MCP-1, and MIP-1α, compared with WT mice. Decreased infiltration of M1 macrophage (F4/80+ TNF-α+ , F4/80+ iNOS+ ) and M2 macrophage (F4/80+ Arginase-1+ , F4/80+ CD163+ ) was observed. The numbers of F4/80+ S1P1 + macrophages of HIF-1α HET wounded tissues were significantly lower compared with WT tissues. S1P treatment of bone marrow macrophages (BMMs) significantly upregulated expression of S1P1 in WT mice compared with HIF-1α HET. Phosphorylation of MAPK rapidly decreased in BMMs of HIF-1α HET mice than in BMMs of WT mice by S1P stimulation. Moreover, S1P enhanced HIF-1α expression via S1P1 receptors to affect macrophage migration. CONCLUSIONS: HIF-1α deficiency aggravates M1 and M2 macrophage infiltration and controls macrophage motility via S1P/S1P1 signaling. These results suggest that HIF-1α signaling may contribute to the regulation of palatal wound healing.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Lisofosfolipídeos , Macrófagos , Receptores de Esfingosina-1-Fosfato , Esfingosina/análogos & derivados , Cicatrização , Animais , Movimento Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Cicatrização/fisiologia
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445695

RESUMO

Accumulating evidence indicates that the molecular pathways mediating wound healing induce cell migration and localization of cytokines to sites of injury. Macrophages are immune cells that sense and actively respond to disturbances in tissue homeostasis by initiating, and subsequently resolving, inflammation. Hypoxic conditions generated at a wound site also strongly recruit macrophages and affect their function. Hypoxia inducible factor (HIF)-1α is a transcription factor that contributes to both glycolysis and the induction of inflammatory genes, while also being critical for macrophage activation. For the latter, HIF-1α regulates sphingosine 1-phosphate (S1P) to affect the migration, activation, differentiation, and polarization of macrophages. Recently, S1P and HIF-1α have received much attention, and various studies have been performed to investigate their roles in initiating and resolving inflammation via macrophages. It is hypothesized that the HIF-1α/S1P/S1P receptor axis is an important determinant of macrophage function under inflammatory conditions and during disease pathogenesis. Therefore, in this review, biological regulation of monocytes/macrophages in response to circulating HIF-1α is summarized, including signaling by S1P/S1P receptors, which have essential roles in wound healing.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Cicatrização/fisiologia , Animais , Diferenciação Celular/genética , Movimento Celular/fisiologia , Citocinas/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Inflamação/metabolismo , Lisofosfolipídeos/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Esfingosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA